Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Rapid CommunicationShort Communication

Improved Reliability of the Rapid Microtiter Plate Assay Using Recombinant Enzyme in Predicting CYP2D6 Inhibition in Human Liver Microsomes

Leonard V. Favreau, Jairam R. Palamanda, Chin-chung Lin and Amin A. Nomeir
Drug Metabolism and Disposition April 1999, 27 (4) 436-439;
Leonard V. Favreau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jairam R. Palamanda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chin-chung Lin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amin A. Nomeir
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A higher throughput method of screening for the inhibition of recombinant CYP2D6 using a microtiter plate (MTP) assay was evaluated using 62 new chemical entities and compared to data from the dextromethorphan O-demethylase assay in human liver microsomes (HLM). The IC50 values for the two assays closely matched for 53 compounds (85%). Six of the variant nine compounds had higher IC50 values with the recombinant enzyme, whereas three had lower IC50 values with the recombinant enzyme. When the inhibition with the recombinant enzyme was determined at various time points, the IC50 values increased as the duration of the incubation increased for the six compounds with higher IC50 values in the MTP assay. The IC50 values at 10 min matched more closely the IC50 values in HLM (95% compared with 85%). For three compounds that showed comparable IC50 values in the two assays, and the three compounds with lower IC50 values in the MTP assay, the IC50 values did not change over time. These results suggest that the six compounds that showed higher IC50 values in the MTP assay at 45 min are substrates for CYP2D6. Using known CYP2D6 substrates, a similar phenomenon was observed, i.e., inhibition curves shifted to higher IC50values as incubation time increased. These results indicate that the higher throughput MTP assay is more comparable to HLM if the IC50 values are determined at 10 min rather than the recommended 45 min. Furthermore, data acquisition at multiple time points may indicate if a compound is a potential substrate or metabolism/mechanism-based inhibitor for the enzyme.

Footnotes

  • Send reprint requests to: Dr. Amin A. Nomeir, Ph.D., Department of Drug Metabolism and Pharmacokinetics, Mail Stop 2880, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033. E-mail: Amin.Nomeir{at}spcorp.com

  • Abbreviations used are::
    NCE
    new chemical entity
    MTP
    microtiter plate
    HLM
    human liver microsomes
    • Received July 27, 1998.
    • Accepted January 18, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 27 (4)
Drug Metabolism and Disposition
Vol. 27, Issue 4
1 Apr 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Improved Reliability of the Rapid Microtiter Plate Assay Using Recombinant Enzyme in Predicting CYP2D6 Inhibition in Human Liver Microsomes
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationShort Communication

Improved Reliability of the Rapid Microtiter Plate Assay Using Recombinant Enzyme in Predicting CYP2D6 Inhibition in Human Liver Microsomes

Leonard V. Favreau, Jairam R. Palamanda, Chin-chung Lin and Amin A. Nomeir
Drug Metabolism and Disposition April 1, 1999, 27 (4) 436-439;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationShort Communication

Improved Reliability of the Rapid Microtiter Plate Assay Using Recombinant Enzyme in Predicting CYP2D6 Inhibition in Human Liver Microsomes

Leonard V. Favreau, Jairam R. Palamanda, Chin-chung Lin and Amin A. Nomeir
Drug Metabolism and Disposition April 1, 1999, 27 (4) 436-439;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preincubation Effects on Inhibition of OCT1 by CsA
  • Carbamazepine Metabolite and Hypersensitivity Reactions
  • SULT4A1 Preserves Mitochondrial Function
Show more Short Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics