Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Development of a Substrate-Activity Based Approach To Identify the Major Human Liver P-450 Catalysts of Cyclophosphamide and Ifosfamide Activation Based on cDNA-Expressed Activities and Liver Microsomal P-450 Profiles

Partha Roy, Li J. Yu, Charles L. Crespi and David J. Waxman
Drug Metabolism and Disposition June 1999, 27 (6) 655-666;
Partha Roy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Li J. Yu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles L. Crespi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David J. Waxman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The contributions of specific human liver cytochrome P-450 (CYP) enzymes to the activation, via 4-hydroxylation, of the oxazaphosphorine anticancer prodrugs cyclophosphamide (CPA) and ifosfamide (IFA) were investigated. Analysis of a panel of 15 human P-450 cDNAs expressed in human lymphoblasts and/or baculovirus-infected insect cells (Supersomes) demonstrated that CYPs 2A6, 2B6, 3A4, 3A5, and three CYP2C enzymes (2C9, 2C18, 2C19) exhibited significant oxazaphosphorine 4-hydroxylase activity, with 2B6 and 3A4 displaying the highest activity toward CPA and IFA, respectively. CYP2B6 metabolized CPA at a ∼16-fold higher in vitro intrinsic clearance (apparentVmax/Km) than IFA, whereas 3A4 demonstrated ∼2-fold higherVmax/Km toward IFA. A relative substrate-activity factor (RSF)-based method was developed to calculate the contributions of individual P-450s to total human liver microsomal metabolism based on cDNA-expressed P-450 activity data and measurements of the liver microsomal activity of each P-450 form. Using this method, excellent correlations were obtained when comparing measured versus predicted (calculated) microsomal 4-hydroxylase activities for both CPA (r = 0.96,p < .001) and IFA (r = 0.90,p < .001) in a panel of 17 livers. The RSF method identified CYP2B6 as a major CPA 4-hydroxylase and CYP3A4 as the dominant IFA 4-hydroxylase in the majority of livers, with CYPs 2C9 and 2A6 making more minor contributions. These predicted P-450 enzyme contributions were verified using an inhibitory monoclonal antibody for 2B6 and the P-450 form-specific chemical inhibitors troleandomycin for 3A4 and sulfaphenazole for 2C9, thus validating the RSF approach. Finally, Western blot analysis using anti-2B6 monoclonal antibody demonstrated the presence of 2B6 protein at a readily detectable level in all but one of 17 livers. These data further establish the significance of human liver CYP2B6 for the activation of the clinically important cancer chemotherapeutic prodrug CPA.

Footnotes

  • Send reprint requests to: Dr. David J. Waxman, Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215. E-mail: djw{at}bio.bu.edu

  • This work was supported in part by National Institutes of Health Grant CA49248 (D.J.W.).

  • ↵2 RSF calculations based on the Supersomes expression system were based on activities determined in the presence of cytochrome b5, with the exception of 2B6, where Supersomes minus cytochrome b5 data was used. 2B6 + cytochrome b5 Supersomes showed ∼5-fold higher 2B6 diagnostic substrate activity (7-EFC O-deethylation) compared with 2B6 without cytochrome b5, whereas CPA 4-hydroxylase activity was only ∼35% higher with cytochrome b5, indicating that there is a significant substrate dependence to the cytochrome b5 stimulation of 2B6. This differential stimulation of test versus diagnostic substrate activity significantly alters the results of RSF-based calculations and is recognized as a limitation of this method (SeeDiscussion).

  • Abbreviations used are::
    CYP
    cytochrome P-450
    CPA
    cyclophosphamide
    IFA
    ifosfamide
    HLS
    human liver microsomal sample
    7-EFC
    7-ethoxy-4-trifluoromethylcoumarin
    RSF
    relative substrate-activity factor
    RAF
    relative activity factor, TAO, troleandomycin
    2C9*1
    2C9-Arg144 allele
    2C9*2
    2C9-Cys144 allele,2C9*3, 2C9-Leu359 allele
    MAB-2B6
    monoclonal antibody specific to 2B6
    • Received December 23, 1998.
    • Accepted March 18, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 27 (6)
Drug Metabolism and Disposition
Vol. 27, Issue 6
1 Jun 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Development of a Substrate-Activity Based Approach To Identify the Major Human Liver P-450 Catalysts of Cyclophosphamide and Ifosfamide Activation Based on cDNA-Expressed Activities and Liver Microsomal P-450 Profiles
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Development of a Substrate-Activity Based Approach To Identify the Major Human Liver P-450 Catalysts of Cyclophosphamide and Ifosfamide Activation Based on cDNA-Expressed Activities and Liver Microsomal P-450 Profiles

Partha Roy, Li J. Yu, Charles L. Crespi and David J. Waxman
Drug Metabolism and Disposition June 1, 1999, 27 (6) 655-666;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Development of a Substrate-Activity Based Approach To Identify the Major Human Liver P-450 Catalysts of Cyclophosphamide and Ifosfamide Activation Based on cDNA-Expressed Activities and Liver Microsomal P-450 Profiles

Partha Roy, Li J. Yu, Charles L. Crespi and David J. Waxman
Drug Metabolism and Disposition June 1, 1999, 27 (6) 655-666;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Series-Compartment Models of Hepatic Elimination
  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics