Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

(R)-, (S)-, and Racemic Fluoxetine N-Demethylation by Human Cytochrome P450 Enzymes

Jeannine M. Margolis, John P. O'Donnell, Dayna C. Mankowski, Sean Ekins and R. Scott Obach
Drug Metabolism and Disposition October 2000, 28 (10) 1187-1191;
Jeannine M. Margolis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John P. O'Donnell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dayna C. Mankowski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sean Ekins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Scott Obach
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Fluoxetine is one of the most widely prescribed selective serotonin reuptake inhibitors (SSRIs) that is marketed worldwide. However, details of its human hepatic metabolism have been speculative and incomplete, possibly due to the sensitivity of analytical techniques and selectivity of specific in vitro probes and reagents used. Studies with (R)-, (S)-, and racemic fluoxetine were undertaken to determine the stereospecific nature of its metabolism and estimate intrinsic clearance contributions of each CYP for fluoxetine N-demethylation. Measurable fluoxetineN-demethylase activity was catalyzed by CYP1A2, -2B6, -2C9, -2C19, -2D6, -3A4, and -3A5. All enzymes catalyzed this reaction for both enantiomers and the racemate, and intrinsic clearance values were similar for the enantiomers for all CYP enzymes except CYP2C9, which demonstrated stereoselectivity for R- over theS-enantiomer. Scaling the intrinsic clearance values for the individual CYP enzymes to estimate contributions of each in human liver microsomes suggested that CYP2D6, CYP2C9, and CYP3A4 contribute the greatest amount of fluoxetine N-demethylation in human liver microsomes. These data were corroborated with the examination of the effects of CYP-specific inhibitors quinidine (CYP2D6), sulfaphenazole (CYP2C9), and ketoconazole (CYP3A4) on fluoxetine N-demethylation in pooled human liver microsomes. Together, these findings suggest a significant role for the polymorphically expressed CYP2D6 in fluoxetine clearance and are consistent with reports on the clinical pharmacokinetics of fluoxetine.

Footnotes

  • Send reprint requests to: R. Scott Obach, Drug Metabolism Department, Candidate Synthesis, Enhancement, and Evaluation, Central Research Division, Pfizer, Inc., Groton, CT 06340. E-mail: obachrs{at}groton.pfizer.com

  • ↵1 Present address: University of Connecticut Health Center, Farmington, CT 06030.

  • ↵2 Present address: Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46285.

  • Abbreviations used are::
    SSRI
    selective serotonin reuptake inhibitor
    CYP
    cytochrome P450
    HPLC/MS/MS
    high pressure liquid chromatography-tandem mass spectrometry
    • Received May 1, 2000.
    • Accepted July 5, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 28 (10)
Drug Metabolism and Disposition
Vol. 28, Issue 10
1 Oct 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
(R)-, (S)-, and Racemic Fluoxetine N-Demethylation by Human Cytochrome P450 Enzymes
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

(R)-, (S)-, and Racemic Fluoxetine N-Demethylation by Human Cytochrome P450 Enzymes

Jeannine M. Margolis, John P. O'Donnell, Dayna C. Mankowski, Sean Ekins and R. Scott Obach
Drug Metabolism and Disposition October 1, 2000, 28 (10) 1187-1191;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

(R)-, (S)-, and Racemic Fluoxetine N-Demethylation by Human Cytochrome P450 Enzymes

Jeannine M. Margolis, John P. O'Donnell, Dayna C. Mankowski, Sean Ekins and R. Scott Obach
Drug Metabolism and Disposition October 1, 2000, 28 (10) 1187-1191;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • P450 cell lines for xenobiotic metabolite generation
  • New Dog, Cat, and Pig P450 2J Enzymes
  • Human ADME properties of abrocitinib
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics