Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Automated Definition of the Enzymology of Drug Oxidation by the Major Human Drug Metabolizing Cytochrome P450s

Dermot F. McGinnity, Alison J. Parker, Matthew Soars and Robert J. Riley
Drug Metabolism and Disposition November 2000, 28 (11) 1327-1334;
Dermot F. McGinnity
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alison J. Parker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew Soars
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Riley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A fully automated assay to determine the enzymology of drug oxidation by the major human hepatic cytochrome P450s (CYPs; CYP1A2, -2C9, -2C19, -2D6, and -3A4) coexpressed functionally inEscherichia coli with human NADPH-P450 reductase has been developed and validated. Ten prototypic substrates were chosen for which clearance was primarily CYP-dependent, and the activities of these five major CYPs were represented. A range of intrinsic clearance (CLint) values were obtained for substrates in both pooled human liver microsomes (HLM; 1–380 μl · min−1mg−1) and recombinant CYPs (0.03–7 μl · min−1pmol−1) and thus the percentage contribution of individual CYPs toward their oxidative metabolism could be estimated. All the assignments were consistent with the available literature data. Tolbutamide was metabolized by CYP2C9 (70%) and CYP2C19 (30%), diazepam by CYP2C19 (100%), ibuprofen by CYP2C9 (90%) and CYP2C19 (10%), and omeprazole by CYP2C19 (68%) and CYP3A4 (32%). Metoprolol and dextromethorphan were primarily CYP2D6 substrates and propranolol was metabolized by CYP2D6 (59%), CYP1A2 (26%), and CYP2C19 (15%). Diltiazem, testosterone, and verapamil were metabolized predominantly by CYP3A4. In addition, the metabolite profile for the CYP-dependent clearance of several markers determined by mass spectroscopy was as predicted from the literature. There was a good correlation between the sum of individual CYP CLint and HLM CLint(r2 = 0.8, P < .001) for the substrates indicating that recombinant CYPs may be used to predict HLM CLint data. This report demonstrates that recombinant human CYPs may be useful as an approach for the prediction of the enzymology of human CYP metabolism early in the drug discovery process.

Footnotes

  • Send reprint requests to: Dr. Rob Riley, Department of Physical & Metabolic Science, AstraZeneca R&D Charnwood, Loughborough, Leicestershire LE11 5RH, UK. E-mail: Rob.Riley{at}astrazeneca.com

  • ↵1 Current address: Department of Molecular and Cellular Pathology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.

  • ↵3 Copies of the program are available from the corresponding author upon request.

  • Abbreviations used are::
    CYP
    cytochrome P450
    HLM
    human liver microsomes
    CLint
    intrinsic clearance
    NCE
    new chemical entity
    RSP
    robotic sample processor
    • Received May 24, 2000.
    • Accepted August 7, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 28 (11)
Drug Metabolism and Disposition
Vol. 28, Issue 11
1 Nov 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Automated Definition of the Enzymology of Drug Oxidation by the Major Human Drug Metabolizing Cytochrome P450s
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Automated Definition of the Enzymology of Drug Oxidation by the Major Human Drug Metabolizing Cytochrome P450s

Dermot F. McGinnity, Alison J. Parker, Matthew Soars and Robert J. Riley
Drug Metabolism and Disposition November 1, 2000, 28 (11) 1327-1334;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Automated Definition of the Enzymology of Drug Oxidation by the Major Human Drug Metabolizing Cytochrome P450s

Dermot F. McGinnity, Alison J. Parker, Matthew Soars and Robert J. Riley
Drug Metabolism and Disposition November 1, 2000, 28 (11) 1327-1334;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mass Balance Recovery and Disposition of AZD4831 in Humans
  • Biotransformation of AZD4831 in Animals and Humans
  • AKRs and GUSs in Testosterone Disposition
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics