Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Analysis of Soy Isoflavone Conjugation In Vitro and in Human Blood Using Liquid Chromatography-Mass Spectrometry

Daniel R. Doerge, Hebron C. Chang, Mona I. Churchwell and C. Lee Holder
Drug Metabolism and Disposition March 2000, 28 (3) 298-307;
Daniel R. Doerge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hebron C. Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mona I. Churchwell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Lee Holder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Soybean products containing isoflavones are widely consumed in Western and Asian diets for putative health benefits, but adverse effects are also possible. The conjugated forms of isoflavones present in a soy nutritional supplement (predominately acetyl glucosides) and in blood from two human volunteers after consuming the supplement (7- and 4′-glucuronides and sulfates) were identified using liquid chromatography coupled with electrospray/tandem mass spectrometry. Circulating conjugates of genistein and daidzein were quantified using selective enzymatic hydrolysis and deuterated internal standards for liquid chromatography-electrospray/mass spectrometry. The levels of isoflavone glucuronides were much greater than the corresponding sulfates or aglycones. The substrate activities of genistein and daidzein were evaluated with recombinant human UDP glucuronosyl transferase (UGT) and sulfotransferase (SULT) by using enzyme kinetics. The SULTs 1A1∗2, 1E, and 2A1 catalyzed formation of a single genistein sulfate; however, SULTs 1A2∗1 and 1A3 had no observed activity. None of the SULTs showed activity with daidzein. Although several UGTs (1A1, 1A4, 1A6, 1A7, 1A9, and 1A10) catalyzed 7- and 4′-glucuronidation of genistein or daidzein, the UGT 1A10 isoform, which is found in human colon but not liver, was found to be specific for genistein. Glucuronidation of only genistein was observed in human colon microsomes, although nearly equal activity was observed for daidzein in human liver and kidney microsomes. These findings suggest a prominent role for glucuronidation of genistein in the intestine concomitant with absorption, although hepatic glucuronidation of absorbed genistein and daidzein aglycones is also likely.

Footnotes

  • Send reprint requests to: Daniel R. Doerge, Ph.D., Department of Health and Human Services, National Center for Toxicological Research, 3900 NCTR Rd., Jefferson, AR 72079-9502. E-mail: ddoerge{at}nctr.fda.gov

  • This work was supported in part by Interagency Agreement 224-93-0001 between NCTR/FDA and the National Institute for Environmental Health Sciences/National Toxicology Program. H.C.C. acknowledges support of a fellowship from the Oak Ridge Institute for Science and Education, administered through an interagency agreement between the U.S. Department of Energy and the U.S. Food and Drug Administration.

  • Abbreviations used are::
    LC
    liquid chromatography
    ES
    electrospray
    MS
    mass spectrometry
    SULT
    sulfotransferase
    MRM
    multiple reaction monitoring
    UDPGA
    uridine-5′-diphosphate-β,d-glucuronic acid ester
    UGT
    UDP glucuronosyl transferase
    • Received August 20, 1999.
    • Accepted November 1, 1999.
  • U.S. Government
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 28 (3)
Drug Metabolism and Disposition
Vol. 28, Issue 3
1 Mar 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Analysis of Soy Isoflavone Conjugation In Vitro and in Human Blood Using Liquid Chromatography-Mass Spectrometry
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Analysis of Soy Isoflavone Conjugation In Vitro and in Human Blood Using Liquid Chromatography-Mass Spectrometry

Daniel R. Doerge, Hebron C. Chang, Mona I. Churchwell and C. Lee Holder
Drug Metabolism and Disposition March 1, 2000, 28 (3) 298-307;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Analysis of Soy Isoflavone Conjugation In Vitro and in Human Blood Using Liquid Chromatography-Mass Spectrometry

Daniel R. Doerge, Hebron C. Chang, Mona I. Churchwell and C. Lee Holder
Drug Metabolism and Disposition March 1, 2000, 28 (3) 298-307;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics