Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Biosynthesis Of All-trans-Retinoic Acid from All-trans-Retinol: Catalysis of All-trans-Retinol Oxidation by Human P-450 Cytochromes

Hao Chen, William N. Howald and Mont R. Juchau
Drug Metabolism and Disposition March 2000, 28 (3) 315-322;
Hao Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William N. Howald
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mont R. Juchau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Oxidative conversion of all-trans-retinol (t-ROH) to all-trans-retinal (t-RAL) is recognized as the rate-limiting step for biosynthesis of all-trans-retinoic acid fromt-ROH in mammalian hepatic tissues. The purpose of this study was to investigate the role of human cytochrome P-450 (CYP)-dependent monooxygenation in the conversion oft-ROH to t-RAL. Adult human liver microsomes (HLMS) were incubated with t-ROH, and retinoids generated were identified and quantified by liquid chromatography-mass spectroscopy, HPLC, and other methods. HLMS-catalyzed generation of t-RAL fromt-ROH was primarily NADPH-dependent and was strongly inhibited by carbon monoxide. Rates of reactions increased linearly with time and concentrations of HLMS, and exhibited classical substrate saturation. These observations strongly indicated that the reaction proceeded via CYP-catalyzed monooxygenation. On the basis of responses to selective chemical inhibitors, isoforms from CYP family 1 and the CYP3A subfamily appeared to be very active. Members of the CYP2C subfamily and CYP2D6 exhibited lesser activities and CYP2A6, CYP2B6, and CYP2E1 were virtually inactive. cDNA-expressed human CYP enzymes (CYP SUPERSOMES) also were used to assess the capacity of individual CYP enzymes to catalyze the reaction. Based on responses to selective chemical inhibitors, specific activities, and levels present in adult human hepatic tissues, CYP1A2 and CYP3A4 strongly appeared to be the major CYP enzymes catalyzing hepatic oxidative conversion oft-ROH to t-RAL in the adult human liver. CYP1A1 and CYP1B1 SUPERSOMES both exhibited exceptionally high activities, and in extrahepatic tissues, these isoforms could play important roles in biosynthesis of all-trans-retinoic acid from t-ROH.

Footnotes

  • Send reprint requests to: M. R. Juchau, Ph.D., Department of Pharmacology, School of Medicine, Box 357280, University of Washington, Seattle, WA 98185. E-mail: juchau{at}u.washington.edu

  • This work was supported by National Institute of Environmental Health Sciences Grant ES-04041.

  • Abbreviations used are::
    t-RA
    all-trans-retinoic acid
    t-ROH
    all-trans-retinol
    t-RAL
    all-trans-retinal
    HLMS
    human liver microsomes
    CYP
    cytochrome P-450
    ANF
    α-naphthoflavone
    TAO
    troleandomycin
    LC-MS
    liquid chromatography-mass spectroscopy
    CO
    carbon monoxide
    • Received July 20, 1999.
    • Accepted November 22, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 28 (3)
Drug Metabolism and Disposition
Vol. 28, Issue 3
1 Mar 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Biosynthesis Of All-trans-Retinoic Acid from All-trans-Retinol: Catalysis of All-trans-Retinol Oxidation by Human P-450 Cytochromes
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Biosynthesis Of All-trans-Retinoic Acid from All-trans-Retinol: Catalysis of All-trans-Retinol Oxidation by Human P-450 Cytochromes

Hao Chen, William N. Howald and Mont R. Juchau
Drug Metabolism and Disposition March 1, 2000, 28 (3) 315-322;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Biosynthesis Of All-trans-Retinoic Acid from All-trans-Retinol: Catalysis of All-trans-Retinol Oxidation by Human P-450 Cytochromes

Hao Chen, William N. Howald and Mont R. Juchau
Drug Metabolism and Disposition March 1, 2000, 28 (3) 315-322;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
  • Biotransformation of Trastuzumab and Pertuzumab
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics