Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Studies on the Cytochrome P450 (CYP)-Mediated Metabolic Properties of Miocamycin: Evaluation of the Possibility of a Metabolic Intermediate Complex Formation with CYP, and Identification of the Human CYP Isoforms

Mie Kasahara, Hisashi Suzuki and Izumi Komiya
Drug Metabolism and Disposition April 2000, 28 (4) 409-417;
Mie Kasahara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hisashi Suzuki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Izumi Komiya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Some macrolide antibiotics cause clinical drug interactions, resulting in altered metabolism of concomitantly administered drugs, via the formation of a metabolic intermediate (MI) complex with cytochrome P450 (CYP), or competitive inhibition of CYP. In this study, the possibility of MI complex formation by miocamycin (MOM) was assessed first. CYP contents and activities in rat liver microsomes were not affected and there were no detectable MI complexes after administration of MOM for either 3 or 10 days to rats. Furthermore, MOM did not form MI complexes in vitro even with microsomes from humans or dexamethasone-pretreated rats. Second, in vitro studies were conducted to identify the human CYP isoforms involved in four 14-hydroxylation reactions in the MOM metabolic pathway. The results showed that it was most likely CYP3A4 involved in the hydroxylations: 1) each hydroxylation in human liver microsomes from 10 different donors strongly correlated with testosterone 6 β-hydroxylation; 2) each hydroxylation was essentially inhibited by ketoconazole and troleandomycin; 3) only cDNA-expressed CYP3A4 and CYP3A5 catalyzed the hydroxylations, and the activities of CYP3A5 were below 5% of those of CYP3A4; and 4) the apparent KM values obtained with native human liver microsomes were comparable with those obtained with cDNA-expressed CYP3A4. In conclusion, MOM is not an inhibitor of CYP via the formation of an MI complex. Moreover, CYP3A4 is mainly responsible for catalyzing the hydroxylation of MOM metabolites. Because CYP3A4 is the most abundant form of CYP in the liver and intestine, this isoform probably accounts for the majority of drug-MOM interactions observed in clinical practice.

Footnotes

  • Send reprint requests to: Izumi Komiya, Ph.D., Pharmacokinetics Department, Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan. E-mail: izumi_komiya{at}meiji.co.jp

  • Abbreviations used are::
    CYP
    cytochrome P450
    MI
    metabolic intermediate
    MOM
    miocamycin
    TAO
    troleandomycin
    EM
    erythromycin
    CAM
    clarithromycin
    MDM
    midecamycin
    DMSO
    dimethyl sulfoxide
    • Received September 1, 1999.
    • Accepted December 16, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 28 (4)
Drug Metabolism and Disposition
Vol. 28, Issue 4
1 Apr 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Studies on the Cytochrome P450 (CYP)-Mediated Metabolic Properties of Miocamycin: Evaluation of the Possibility of a Metabolic Intermediate Complex Formation with CYP, and Identification of the Human CYP Isoforms
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Studies on the Cytochrome P450 (CYP)-Mediated Metabolic Properties of Miocamycin: Evaluation of the Possibility of a Metabolic Intermediate Complex Formation with CYP, and Identification of the Human CYP Isoforms

Mie Kasahara, Hisashi Suzuki and Izumi Komiya
Drug Metabolism and Disposition April 1, 2000, 28 (4) 409-417;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Studies on the Cytochrome P450 (CYP)-Mediated Metabolic Properties of Miocamycin: Evaluation of the Possibility of a Metabolic Intermediate Complex Formation with CYP, and Identification of the Human CYP Isoforms

Mie Kasahara, Hisashi Suzuki and Izumi Komiya
Drug Metabolism and Disposition April 1, 2000, 28 (4) 409-417;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Humanized PXR-CAR-CYP3A4/7 Mouse as Model of Induction
  • Ozanimod Human Metabolism and Disposition
  • High-Throughput Characterization of SLCO1B1 VUS
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics