Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Substrate-Dependent Effect of Acetonitrile on Human Liver Microsomal Cytochrome P450 2C9 (CYP2C9) Activity

Cuyue Tang, Magang Shou and A. David Rodrigues
Drug Metabolism and Disposition May 2000, 28 (5) 567-572;
Cuyue Tang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Magang Shou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. David Rodrigues
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Acetonitrile is an organic solvent commonly used to increase the solubility of lipophilic substrates for in vitro studies. In this study, we examined its effect on four reactions (diclofenac hydroxylation, tolbutamide methyl hydroxylation, phenytoin hydroxylation, and celecoxib methyl hydroxylation) catalyzed by human liver microsomes and by the recombinant CYP2C9. In both cases, the effect of acetonitrile on activity was found to be substrate-dependent. Namely, it increased diclofenac 4′-hydroxylase and tolbutamide methyl hydroxylase activities, but decreased celecoxib methyl hydroxylase activity in a concentration-dependent manner. By comparison, hydroxylation of phenytoin was resistant to its effect. The presence of acetonitrile (3%, v/v) gave rise to a lowerKm and a higherVmax for diclofenac hydroxylase in both liver microsomes and recombinant CYP2C9 preparations (87 and 52% increase inVmax/Km ratio, respectively). On the other hand, the inhibitory effect of the solvent (1%, v/v) toward celecoxib hydroxylase was characterized by a decrease in Vmax (human liver microsomes) or a change in both Km andVmax (rCYP2C9), leading to 25 and 46% decrease inVmax/Km for both systems. The results of this study underscore the need for careful evaluation of solvent effects before initiation of inhibition or cytochrome P450 reaction phenotyping studies.

Footnotes

  • Send reprint requests to: Cuyue Tang, Ph.D., Dept. of Drug Metabolism, Merck Research Laboratories, Sumneytown Pike, P.O. Box 4, WP75A-203, West Point, PA 19486-0004. E-mail:cuyue_tang{at}merck.com

  • Abbreviations used are::
    CYP
    cytochrome P450
    rCYP
    recombinant cytochrome P450
    MAb
    monoclonal antibody
    SRSs
    substrate recognition sites
    pHPPH
    5-(4′-hydroxyphenyl)-5-phenylhydantoin
    MPHT
    5-(4′-methylpheny)-5-phenylhydantoin
    LC-MS
    liquid chromatography-mass spectrometry
    • Received December 3, 1999.
    • Accepted February 15, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 28 (5)
Drug Metabolism and Disposition
Vol. 28, Issue 5
1 May 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Substrate-Dependent Effect of Acetonitrile on Human Liver Microsomal Cytochrome P450 2C9 (CYP2C9) Activity
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Substrate-Dependent Effect of Acetonitrile on Human Liver Microsomal Cytochrome P450 2C9 (CYP2C9) Activity

Cuyue Tang, Magang Shou and A. David Rodrigues
Drug Metabolism and Disposition May 1, 2000, 28 (5) 567-572;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Substrate-Dependent Effect of Acetonitrile on Human Liver Microsomal Cytochrome P450 2C9 (CYP2C9) Activity

Cuyue Tang, Magang Shou and A. David Rodrigues
Drug Metabolism and Disposition May 1, 2000, 28 (5) 567-572;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Ontogeny of CPPGL
  • Expression of AKR and SDR Isoforms in the Human Intestine
  • Metabolism of Lufotrelvir in Humans
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics