Abstract
Like other basic amphiphilic drugs, the (S)-enantiomer of the antiallergic drug ketotifen exhibited biphasic kinetics when it was converted to two isomeric quaternary ammonium-linked glucuronides in human liver microsomes. For (R)-ketotifen this applied when incubations were carried out in the absence of a detergent. Two UDP-glucuronosyltransferases (UGTs) present in human liver, UGT1A4 and UGT1A3, were previously shown to catalyze tertiary amineN-glucuronidation when expressed in HK293 cells. Therefore, the conjugation kinetics of (R)- and (S)-ketotifen were investigated with the two expressed proteins. When homogenates of HK293 cells expressing UGT1A4 were incubated without detergent, N-glucuronidation kinetics were monophasic with KM values of 59 ± 5 μM for (R)- and 86 ± 26 μM for (S)-ketotifen. In experiments with membranes containing expressed UGT1A3, somewhat higher KM values were obtained. These values correspond to the high rather than to the low KM components of ketotifen glucuronidation in liver microsomes, the latter exhibitingKM values around 2 and 1 μM, respectively, with (R)- and (S)-ketotifen. With amitriptyline as the substrate, N-glucuronidation kinetics in the absence of detergent were biphasic in human liver microsomes and monophasic with a high KMvalue in cell homogenates containing UGT1A4. The results suggest that UGT1A4 and UGT1A3 catalyze high-KMN-glucuronidation of tertiary amine drugs, whereas the low-KM reaction requires either an alternative enzyme or a special conformation of UGT1A4 or UGT1A3 that can be attained in liver microsomes, but not in HK293 cell membranes.
Footnotes
-
Send reprint requests to: Dr. Ursula Breyer-Pfaff, Department of Toxicology, University of Tuebingen, Wilhelmstrasse 56, D-72074, Tuebingen, Germany. E-mail:ursula.breyer-pfaff{at}uni-tuebingen.de
- Abbreviation used is::
- UGT
- UDP-glucuronosyltransferase
- Received January 21, 2000.
- Accepted April 14, 2000.
- The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|