Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Multisite Kinetic Models for CYP3A4: Simultaneous Activation and Inhibition of Diazepam and Testosterone Metabolism

Kathryn E. Kenworthy, Stephen E. Clarke, Julie Andrews and J. Brian Houston
Drug Metabolism and Disposition December 2001, 29 (12) 1644-1651;
Kathryn E. Kenworthy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen E. Clarke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julie Andrews
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Brian Houston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Some substrates of cytochrome P450 (CYP) 3A4, the most abundant CYP in the human liver responsible for the metabolism of many structurally diverse therapeutic agents, do not obey classical Michaelis-Menten kinetics and demonstrate homotropic and/or heterotropic cooperativity. The unusual kinetics and differential effects observed between substrates of this enzyme confound the prediction of drug clearance and drug-drug interactions from in vitro data. We have investigated the hypothesis that CYP3A4 may bind multiple molecules simultaneously using diazepam (DZ) and testosterone (TS). Both substrates showed sigmoidal kinetics in B-lymphoblastoid microsomes containing a recombinant human CYP3A4 and reductase. When analyzed in combination, TS activated the formation of 3-hydroxydiazepam (3HDZ) andN-desmethyldiazepam (NDZ) (maximal activation 374 and 205%, respectively). For 3HDZ, Vmax values remained constant with increasing TS, whereas the S50 and Hill values decreased, tending to make the data less sigmoidal. Similar trends were observed for the NDZ pathway. DZ inhibited the formation 6β-hydroxytestosterone (maximal inhibition, 45% of control), causing a decrease in Vmax but no significant change to the S50 and Hill values, suggesting that DZ may inhibit via a separate effector site. Multisite rate equation models have been derived to explore the analysis of such complex kinetic data and to allow accurate determination of the kinetic parameters for activation and inhibition. The data and models presented are consistent with proposals that CYP3A4 can bind and metabolize multiple substrate molecules simultaneously; they also provide a generic solution for the interpretation of the complex kinetic data derived from CYP3A4 substrates.

Footnotes

  • ↵1 Present address: Department of Mechanism and Extrapolation Technologies, GlaxoSmithKline, The Frythe, Welwyn, Herts, AL6 9A, UK.

  • K.E.K. was financially supported by a SmithKline Beecham studentship. A portion of this study was presented at the meeting of the British Pharmacological Society, December 10–12, 1997, Harrogate, UK and appeared in abstract form in Br J Clin Pharmacol45:520P–521P (1998).

  • Abbreviations used are::
    CYP
    cytochrome P450
    DZ
    diazepam
    TS
    testosterone
    3HDZ
    3-hydroxydiazepam
    NDZ
    N-desmethyldiazepam
    6β-HTS
    6β-hydroxytestosterone
    CPR
    cytochrome P450 reductase
    CLmax
    clearance at maximal activation
    • Received May 25, 2001.
    • Accepted September 18, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 29 (12)
Drug Metabolism and Disposition
Vol. 29, Issue 12
1 Dec 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Multisite Kinetic Models for CYP3A4: Simultaneous Activation and Inhibition of Diazepam and Testosterone Metabolism
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Multisite Kinetic Models for CYP3A4: Simultaneous Activation and Inhibition of Diazepam and Testosterone Metabolism

Kathryn E. Kenworthy, Stephen E. Clarke, Julie Andrews and J. Brian Houston
Drug Metabolism and Disposition December 1, 2001, 29 (12) 1644-1651;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Multisite Kinetic Models for CYP3A4: Simultaneous Activation and Inhibition of Diazepam and Testosterone Metabolism

Kathryn E. Kenworthy, Stephen E. Clarke, Julie Andrews and J. Brian Houston
Drug Metabolism and Disposition December 1, 2001, 29 (12) 1644-1651;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mass Balance Recovery and Disposition of AZD4831 in Humans
  • Biotransformation of AZD4831 in Animals and Humans
  • AKRs and GUSs in Testosterone Disposition
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics