Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Metabolism of a Disulfiram Metabolite, S-MethylN,N-Diethyldithiocarbamate, by Flavin Monooxygenase in Human Renal Microsomes

M. Gennett Pike, Dennis C. Mays, David W. Macomber and James J. Lipsky
Drug Metabolism and Disposition February 2001, 29 (2) 127-132;
M. Gennett Pike
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dennis C. Mays
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David W. Macomber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James J. Lipsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

S-MethylN,N-diethyldithiocarbamate (MeDDC), a metabolite of the alcohol deterrent disulfiram, is converted to MeDDC sulfine and then S-methylN,N-diethylthiocarbamate sulfoxide, the proposed active metabolite in vivo. Several isoforms of CYP450 and to a lesser extent flavin monooxygenase (FMO) metabolize MeDDC in the liver. The human kidney contains FMO1 and several isoforms of CYP450, including members of the CYP3A, CYP4A, CYP2B, and CYP4F subfamilies. In this study the metabolism of MeDDC by the human kidney was examined, and the enzymes responsible for this metabolism were determined. MeDDC was incubated with human renal microsomes from five donors or with insect microsomes containing human FMO1, CYP4A11, CYP3A4, CYP3A5, or CYP2B6. MeDDC sulfine was formed at 5 μM MeDDC by renal microsomes at a rate of 210 ± 50 pmol/min/mg of microsomal protein (mean ± S.D., n = 5) and by FMO1 at 7.6 ± 0.2 nmol/min/nmol (n = 3). Oxidation of 5 μM MeDDC was negligible by all CYP450 tested (≤0.03 nmol/min/nmol). Inhibition of FMO by methimazole or heat diminished MeDDC sulfine formation 75 to 89% in renal microsomes. Inhibition of CYP450 in renal microsomes by N-benzylimidazole or antibody to the CYP450 NADPH reductase had no effect on MeDDC sulfine production. Benzydamine N-oxidation, a probe for FMO activity, correlated with MeDDC sulfine formation in renal microsomes (r = 0.951, p = 0.013). TheKM values for MeDDC sulfine formation by renal microsomes and recombinant human FMO1 were 11 and 15 μM, respectively. These results demonstrate a role for the kidney and FMO1 in the metabolism of MeDDC in humans.

Footnotes

  • Send reprint requests to: M. Gennett Pike, Clinical Pharmacology Unit, Mayo Foundation, Guggenheim 6, 200 First St. SW, Rochester, MN 55905. E-mail: pike.mary{at}mayo.edu

  • This research was supported by Grants R01-AA09543 and T32 GM 08685 from the National Institutes of Health and by FDT-000-886 from the FDA.

  • Abbreviations used are::
    MeDDC
    S-methyl-N,N-diethyldithiocarbamate
    CYP450
    cytochrome P450s
    DTPA
    diethylenetriaminepentaacetic acid
    FMO
    flavin monooxygenase
    NBI
    N-benzylimidazole
    HPLC
    high-performance liquid chromatography
    • Received September 27, 2000.
    • Accepted October 10, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 29 (2)
Drug Metabolism and Disposition
Vol. 29, Issue 2
1 Feb 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism of a Disulfiram Metabolite, S-MethylN,N-Diethyldithiocarbamate, by Flavin Monooxygenase in Human Renal Microsomes
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Metabolism of a Disulfiram Metabolite, S-MethylN,N-Diethyldithiocarbamate, by Flavin Monooxygenase in Human Renal Microsomes

M. Gennett Pike, Dennis C. Mays, David W. Macomber and James J. Lipsky
Drug Metabolism and Disposition February 1, 2001, 29 (2) 127-132;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Metabolism of a Disulfiram Metabolite, S-MethylN,N-Diethyldithiocarbamate, by Flavin Monooxygenase in Human Renal Microsomes

M. Gennett Pike, Dennis C. Mays, David W. Macomber and James J. Lipsky
Drug Metabolism and Disposition February 1, 2001, 29 (2) 127-132;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics