Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Effects of Organic Solvents on the Activities of Cytochrome P450 Isoforms, UDP-Dependent Glucuronyl Transferase, and Phenol Sulfotransferase in Human Hepatocytes

Judy Easterbrook, Chuang Lu, Yumiko Sakai and Albert P. Li
Drug Metabolism and Disposition February 2001, 29 (2) 141-144;
Judy Easterbrook
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chuang Lu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yumiko Sakai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Albert P. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We studied the effects of acetonitrile, dimethyl sulfoxide (DMSO), and methanol (MeOH) in human hepatocytes on cytochrome P450 (CYP) and phase II conjugation activities: phenacetinO-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), tolbutamide 4-hydroxylation (CYP2C9),S-mephenytoin 4′-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), testosterone 6β-hydroxylation (CYP3A4), and umbelliferone glucuronidation and sulfation. The solvents were evaluated at concentrations (v/v) of 0.1, 1, and 2%. Previously cryopreserved human hepatocytes pooled from multiple donors were used as suspension cultures in this study. DMSO was found to inhibit CYP2C9 and CYP2C19, CYP2E1, and CYP3A4 in a concentration-dependent manner. At 2% DMSO, the activities for the four isoforms were approximately 40% (CYP2C9), 23% (CYP2C19), and 11% (CYP2E1) of that observed for 0.1% acetonitrile and 45% (CYP3A4) of that observed for 1% acetonitrile. No apparent inhibitory effects were observed for the other activities evaluated. Methanol was found to inhibit CYP2C9 and CYP2E1 activities, but to a lesser extent than DMSO. Acetonitrile had no apparent effects on any of the on any of the activities evaluated. These findings should be considered when choosing an organic solvent for metabolism studies with human hepatocytes.

Footnotes

  • Send reprint requests to: Dr. Albert P. Li, In Vitro Technologies, Inc., 1450 S. Rolling Rd., Baltimore, MD 21227. E-mail:lialbert{at}invitrotech.com

  • Abbreviations used are::
    DMSO
    dimethyl sulfoxide
    CYP
    cytochrome P450
    UDPGT
    UDP-dependent glucuronyl transferase
    PST
    phenol sulfotransferase
    HPLC
    high-performance liquid chromatography
    • Received July 20, 2000.
    • Accepted October 18, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 29 (2)
Drug Metabolism and Disposition
Vol. 29, Issue 2
1 Feb 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of Organic Solvents on the Activities of Cytochrome P450 Isoforms, UDP-Dependent Glucuronyl Transferase, and Phenol Sulfotransferase in Human Hepatocytes
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Effects of Organic Solvents on the Activities of Cytochrome P450 Isoforms, UDP-Dependent Glucuronyl Transferase, and Phenol Sulfotransferase in Human Hepatocytes

Judy Easterbrook, Chuang Lu, Yumiko Sakai and Albert P. Li
Drug Metabolism and Disposition February 1, 2001, 29 (2) 141-144;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Effects of Organic Solvents on the Activities of Cytochrome P450 Isoforms, UDP-Dependent Glucuronyl Transferase, and Phenol Sulfotransferase in Human Hepatocytes

Judy Easterbrook, Chuang Lu, Yumiko Sakai and Albert P. Li
Drug Metabolism and Disposition February 1, 2001, 29 (2) 141-144;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results and Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Role of Human MSRA on Sulindac Activation
  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics