Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Differential Induction of Rat Hepatic Cytochromes P450 3A1, 3A2, 2B1, 2B2, and 2E1 in Response to Pyridine Treatment

Hyesook Kim, David A. Putt, Richard C. Zangar, C. Roland Wolf, F. Peter Guengerich, Robert J. Edwards, Paul F. Hollenberg and Raymond F. Novak
Drug Metabolism and Disposition March 2001, 29 (3) 353-360;
Hyesook Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Putt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard C. Zangar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Roland Wolf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Peter Guengerich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Edwards
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul F. Hollenberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raymond F. Novak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pyridine (PY) effects on rat hepatic cytochromes P450 (CYP) 3A1 and 3A2 expression were examined at the levels of metabolic activity, protein, and mRNA and were compared with those of CYP2B1/2 and CYP2E1. CYP3A metabolic activity as well as CYP3A protein and mRNA levels increased following treatment of rats with PY. CYP3A1 and CYP3A2 were differentially affected by PY treatment in terms of induction levels, dose dependence, and stability of mRNA. CYP3A1 mRNA levels maximally increased ∼42-fold after PY treatment, whereas CYP3A2 mRNA level increased ∼4-fold. Moreover, CYP3A1 mRNA levels decreased more rapidly than those of CYP3A2 as determined following inhibition of transcription with actinomycin D or cordycepin. Treatment of rats with PY resulted in a dose-dependent increase in CYP3A1, CYP3A2, and CYP2B1/2B2 protein levels. In contrast to the effects of PY treatment on CYP3A1 and 2B, CYP2E1 protein levels increased in the absence of a concomitant increase in CYP2E1 mRNA levels. Treatment of rats with PY at 200 mg/kg/day for 3 days increased both protein and mRNA levels of CYP3A2, whereas treatment with higher than 200 mg/kg/day for 3 days increased CYP3A2 protein levels without an increase in CYP3A2 mRNA levels. These data demonstrated that PY regulates the various CYPs examined in this study at different levels of expression and that PY regulates CYP3A1 expression through transcriptional activation and CYP3A2 expression through transcriptional and post-transcriptional activation at a low- and high-dose PY treatment, respectively.

Footnotes

  • Send reprint requests to: Raymond F. Novak, Wayne State University, Institute of Environmental Health Sciences, 2727 Second Ave., Room 4000, Detroit, MI. E-mail: raymond.novak{at}wayne.edu

  • This research was supported by National Institutes of Health Grants ES05577 (H.K.), CA16954 (P.F.H.), CA44353 and ES00267 (F.P.G.), and ES03656 (R.F.N.).

  • ↵2 CYP3A1 was the first rat CYP3A form cloned and has been reported to be at very low levels in both males and females but is highly induced in response to dexamethasone. CYP3A23 is a recent addition to the rat CYP3A subfamily and is 98.6% identical to CYP3A1 (Kirita and Matsubara, 1993; Komori and Oda, 1994), and it may be that earlier studies describing the expression of CYP3A1 may have been measuring CYP3A23. In a study using reverse transcriptase-polymerase chain reaction to detect the various CYP3A forms, CYP3A23 was found to be regulated in a manner similar to that reported previously for CYP3A1, but no CYP3A1 was detected, even though three different PCR primer combinations were tested (Mahnke et al., 1997). Since the oligomeric probe sequence previously believed to be specific for CYP3A1 (Kirita and Matsubara, 1993) is derived from a region that is completely conserved in CYP3A23, our data pertinent to CYP3A1 mRNA expression may also reflect CYP3A23 expression.

  • ↵3 The NCBI BLAST search result was as of May 25, 2000.

  • Abbreviations used are::
    PY
    pyridine
    PB
    phenobarbital
    DEX
    dexamethasone
    CYP
    cytochrome P450
    PAGE
    polyacrylamide gel electrophoresis
    Mab
    monoclonal antibody
    • Received August 1, 2000.
    • Accepted August 12, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 29 (3)
Drug Metabolism and Disposition
Vol. 29, Issue 3
1 Mar 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Induction of Rat Hepatic Cytochromes P450 3A1, 3A2, 2B1, 2B2, and 2E1 in Response to Pyridine Treatment
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Differential Induction of Rat Hepatic Cytochromes P450 3A1, 3A2, 2B1, 2B2, and 2E1 in Response to Pyridine Treatment

Hyesook Kim, David A. Putt, Richard C. Zangar, C. Roland Wolf, F. Peter Guengerich, Robert J. Edwards, Paul F. Hollenberg and Raymond F. Novak
Drug Metabolism and Disposition March 1, 2001, 29 (3) 353-360;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Differential Induction of Rat Hepatic Cytochromes P450 3A1, 3A2, 2B1, 2B2, and 2E1 in Response to Pyridine Treatment

Hyesook Kim, David A. Putt, Richard C. Zangar, C. Roland Wolf, F. Peter Guengerich, Robert J. Edwards, Paul F. Hollenberg and Raymond F. Novak
Drug Metabolism and Disposition March 1, 2001, 29 (3) 353-360;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Human ADME Properties of Abrocitinib
  • MSCs Pharmacokinetics under liver diseases
  • In Vitro P450 Suppression by Peptide Not Observed in Clinic
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics