Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Mechanism-Based Inactivation of CYP2C11 by Diclofenac

Yasuhiro Masubuchi, Atsushi Ose and Toshiharu Horie
Drug Metabolism and Disposition September 2001, 29 (9) 1190-1195;
Yasuhiro Masubuchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Atsushi Ose
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Toshiharu Horie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

It has been known that diclofenac is biotransformed into chemically reactive metabolites, which bind covalently to liver microsomal proteins, including cytochrome P450 enzyme(s). We have investigated the ability and selectivity of diclofenac to inactivate P450 enzymes. Preincubation of microsomes of untreated rats with diclofenac in the presence of NADPH resulted in time-dependent loss of testosterone 2α- and 16α-hydroxylation activities. No effect of the preincubation was observed on ethoxyresorufin O-deethylase, pentoxyresorufin O-depentylase, or testosterone 6β-hydroxylation activity. The time-dependent decreases in testosterone 2α- and 16α-hydroxylation activities followed the pseudo-first order kinetics and were saturable with increasing diclofenac concentrations. Reduced glutathione was not capable of protecting against the decrease in the enzyme activities. These data establish that a mechanism-based inactivation of CYP2C11 occurs during the oxidative metabolism of diclofenac. The diclofenac concentrations required to achieve the half-maximal rate of inactivation (KI) were 3 to 4 μM, which were close toKm for the low-Kmcomponents for diclofenac 4′- and 5-hydroxylation activities (7.29 and 4.43 μM, respectively). Anti-CYP2C11 IgG inhibited diclofenac 4′- and 5-hydroxylation activities, indicating that CYP2C11 is a major isozyme responsible for these aromatic oxidations. The preincubation of microsomes with 4′- or 5-hydroxydiclofenac did not cause a decrease in testosterone 2α- or 16α-hydroxylation activity, suggesting that neither of the primary metabolites is a precursor of the metabolite that inactivates CYP2C11. Therefore, a highly reactive intermediate(s) inactivating CYP2C11, probably arene-oxide, appears to be generated during the process of diclofenac 4′- and/or 5-hydroxylation. Diclofenac metabolism in human liver microsomes did not cause inactivation of CYP2C9, a major isozyme involved in diclofenac 4′-hydroxylation. Because the human microsomes have high diclofenac 4′-hydroxylation but not 5-hydroxylation activity, importance of the latter pathway in the inactivation is suggested.

Footnotes

  • This study was supported in part by a grant-in-aid from the Ministry of Education, Science, and Culture of Japan.

  • Abbreviations used are::
    CYP
    cytochrome P450
    GSH
    reduced glutathione
    G-6-P
    glucose 6-phosphate
    G-6-PDH
    glucose 6-phosphate dehydrogenase
    HPLC
    high-performance liquid chromatography
    EROD
    ethoxyresorufin O-deethylase
    PROD
    pentoxyresorufin O-depentylase
    • Received March 19, 2001.
    • Accepted May 16, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 29 (9)
Drug Metabolism and Disposition
Vol. 29, Issue 9
1 Sep 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanism-Based Inactivation of CYP2C11 by Diclofenac
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Mechanism-Based Inactivation of CYP2C11 by Diclofenac

Yasuhiro Masubuchi, Atsushi Ose and Toshiharu Horie
Drug Metabolism and Disposition September 1, 2001, 29 (9) 1190-1195;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Mechanism-Based Inactivation of CYP2C11 by Diclofenac

Yasuhiro Masubuchi, Atsushi Ose and Toshiharu Horie
Drug Metabolism and Disposition September 1, 2001, 29 (9) 1190-1195;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • P450 cell lines for xenobiotic metabolite generation
  • New Dog, Cat, and Pig P450 2J Enzymes
  • Human ADME properties of abrocitinib
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics