Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Depentylation of the Rat Esophageal Carcinogen, Methyl-n-pentylnitrosamine, by Microsomes from Various Human and Rat Tissues and by Cytochrome P450 2A3

Sheng Chong Chen, Lin Zhou, Xinxin Ding and Sidney S. Mirvish
Drug Metabolism and Disposition September 2001, 29 (9) 1221-1228;
Sheng Chong Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lin Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xinxin Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sidney S. Mirvish
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Methyl-n-pentylnitrosamine (MPN) is carcinogenic for the rat esophagus. To determine organ specificity for MPN activation by human tissues, microsomes isolated from human organs (snap-frozen <6 h after death or removed surgically) were incubated with [pentyl-3H]MPN, and [3H]pentaldehyde formation was measured by high-pressure liquid chromatography of its 2,4-dinitrophenylhydrazone using radioflow assay. With 100 μM MPN, mean depentylation rates were 6.6 (liver), 2.9 to 3.8 (kidney, stomach, small intestine, and colon), and 0.4 to 1.6 (esophagus, lung, and skin) pmol of pentaldehyde/mg of protein/min. Of 14 human esophagi, four showed relatively high depentylation rates of 3.3 to 4.1 pmol/mg/min. Apparent Km was 80 to 160 μM (Vmax, 3–15 pmol/mg/min) for three esophagi, 90 to 130 (2 livers), and 1330 (1 kidney) μM. Rat tissues showed mean depentylation rates for 100 μM MPN of 24.9 (liver), 14.5 (esophagus), 7.0 (lung), and 0.0 to 2.7 (5 other tissues) pmol/mg/min. MPN depentylation by rat cytochrome P450 2A3 showed an apparentKm of 8 μM (Vmax, 70 pmol/nmol of P450/min) and was competitively inhibited by the CYP2A inhibitor coumarin (apparentKi, 4 μM). Coumarin (0.4 mM) inhibited microsomal depentylation of 100 μM MPN by 37 to 62% for human esophagus, liver, kidney, and colon and for rat esophagus but not for rat liver and lung. MPN depentylation by rat esophageal microsomes increased up to 90% on adding P450 reductase. The results indicate organ-specific MPN metabolism by rat but not human esophagus. Nevertheless, the relatively high activity of four human esophagi might indicate increased susceptibility of some individuals to carcinogenesis by unsymmetrical dialkylnitrosamines.

Footnotes

  • ↵1 Parts of this study were presented at two meetings (Chen and Mirvish, 1996; Chen et al., 1999b).

  • This research was supported by Grant RO1-CA-35628 and core Grant P30-CA-36727 from the National Cancer Institute, Grant RO1-ES-07462 from the National Institute for Environmental Health Sciences, and Grant 97B-125 from the American Institute of Cancer Research.

  • Abbreviations used are::
    MPN
    methyl-n-pentylnitrosamine
    MBZN
    methylbenzylnitrosamine
    NNN
    N′-nitrosonornicotine
    DMN
    dimethylnitrosamine
    PENT
    pentaldehyde
    P450
    cytochrome P450
    • Received March 15, 2001.
    • Accepted June 6, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 29 (9)
Drug Metabolism and Disposition
Vol. 29, Issue 9
1 Sep 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Depentylation of the Rat Esophageal Carcinogen, Methyl-n-pentylnitrosamine, by Microsomes from Various Human and Rat Tissues and by Cytochrome P450 2A3
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Depentylation of the Rat Esophageal Carcinogen, Methyl-n-pentylnitrosamine, by Microsomes from Various Human and Rat Tissues and by Cytochrome P450 2A3

Sheng Chong Chen, Lin Zhou, Xinxin Ding and Sidney S. Mirvish
Drug Metabolism and Disposition September 1, 2001, 29 (9) 1221-1228;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Depentylation of the Rat Esophageal Carcinogen, Methyl-n-pentylnitrosamine, by Microsomes from Various Human and Rat Tissues and by Cytochrome P450 2A3

Sheng Chong Chen, Lin Zhou, Xinxin Ding and Sidney S. Mirvish
Drug Metabolism and Disposition September 1, 2001, 29 (9) 1221-1228;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • P450 cell lines for xenobiotic metabolite generation
  • Human ADME properties of abrocitinib
  • Impact of physiological microenvironments on HepaRG cells
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics