Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Induction of Multidrug Resistance-1 and Cytochrome P450 mRNAs in Human Mononuclear Cells by Rifampin

Ali Asghar, J. Christopher Gorski, Barbara Haehner-Daniels and Stephen D. Hall
Drug Metabolism and Disposition January 2002, 30 (1) 20-26; DOI: https://doi.org/10.1124/dmd.30.1.20
Ali Asghar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Christopher Gorski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barbara Haehner-Daniels
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen D. Hall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Reverse transcription-polymerase chain reaction (RT-PCR) and quantitative, competitive RT-PCR were used to examine the capability of rifampin to induce the expression of mRNA derived from multidrug resistance-1 (MDR1) and drug-metabolizing cytochrome P450 (P450) genes in the mononuclear fraction (lymphocytes) of human blood. A total of 50 healthy volunteers (age, 18–74) participated in two studies in which 600 mg of rifampin was administered orally once daily in the evening for 7 days. Twenty of these individuals also received fexofenadine before and after rifampin dosing. MDR1 and CYP2C8 mRNAs were expressed in 100% (50 of 50) and 95% (35 of 37) of individuals, respectively, at baseline. A significant (P < 0.05; n = 37) increase in the expression of MDR1 mRNA from 176,900 ± 122,000 to 248,500 ± 162,300 molecules/μg of RNA was observed following rifampin administration in the human lymphocytes. There was no significant (P > 0.05) difference in MDR1 mRNA expression between males and females at baseline. Interestingly, 58% of the individuals (n = 29) demonstrated a 120% increase [95% confidence interval (CI); 120%; range, 81–153%; responders] in MDR1 mRNA expression. In contrast, the remaining 42% of individuals (n = 21) exhibited a mean decrease of −5.2% (95% CI; −5.2%; range, −15 to +4%; nonresponders). Rifampin steady-state trough serum concentrations were not significantly different (P > 0.05) between responders and nonresponders. Likewise, there was no relationship between the observed induction in MDR1 mRNA expression in lymphocytes and the observed increase in fexofenadine oral clearance in twenty volunteers. The mRNA of CYP2E1, CYP3A5, CYP3A7, CYP4A11, and CYP4B1 genes were variably expressed at baseline and following rifampin treatment. In contrast, CYP2C9 and CYP3A4 mRNAs were undetectable in lymphocytes both before and after rifampin dosing. Interindividual variability in baseline expression and inducibility of MDR1 and P450 mRNA in human lymphocytes appeared to be substantial and may not reflect the expression of these enzymes in other tissues.

Footnotes

  • Supported by National Institutes of Health Grants AG13718 and M01 RR00750 to the Indiana University General Clinical Research Center.

  • Abbreviations used are::
    P450
    cytochrome P450
    MDR1
    multidrug resistance-1
    P-gp
    P-glycoprotein
    RT-PCR
    reverse transcription-polymerase chain reaction
    F
    forward
    R
    reverse
    crsRNA
    competitive reference standard RNA
    PXR
    pregnane X receptor
    • Received April 13, 2001.
    • Accepted September 30, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 30 (1)
Drug Metabolism and Disposition
Vol. 30, Issue 1
1 Jan 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Induction of Multidrug Resistance-1 and Cytochrome P450 mRNAs in Human Mononuclear Cells by Rifampin
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Induction of Multidrug Resistance-1 and Cytochrome P450 mRNAs in Human Mononuclear Cells by Rifampin

Ali Asghar, J. Christopher Gorski, Barbara Haehner-Daniels and Stephen D. Hall
Drug Metabolism and Disposition January 1, 2002, 30 (1) 20-26; DOI: https://doi.org/10.1124/dmd.30.1.20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Induction of Multidrug Resistance-1 and Cytochrome P450 mRNAs in Human Mononuclear Cells by Rifampin

Ali Asghar, J. Christopher Gorski, Barbara Haehner-Daniels and Stephen D. Hall
Drug Metabolism and Disposition January 1, 2002, 30 (1) 20-26; DOI: https://doi.org/10.1124/dmd.30.1.20
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • P450 cell lines for xenobiotic metabolite generation
  • New Dog, Cat, and Pig P450 2J Enzymes
  • Human ADME properties of abrocitinib
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics