Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Trimethoprim and Sulfamethoxazole are Selective Inhibitors of CYP2C8 and CYP2C9, Respectively

Xia Wen, Jun-Sheng Wang, Janne T. Backman, Jouko Laitila and Pertti J. Neuvonen
Drug Metabolism and Disposition June 2002, 30 (6) 631-635; DOI: https://doi.org/10.1124/dmd.30.6.631
Xia Wen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun-Sheng Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Janne T. Backman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jouko Laitila
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pertti J. Neuvonen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To evaluate the inhibitory effects of trimethoprim and sulfamethoxazole on cytochrome P450 (P450) isoforms, selective marker reactions for CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were examined in human liver microsomes and recombinant CYP2C8 and CYP2C9. The in vivo drug interactions of trimethoprim and sulfamethoxazole were predicted in vitro using [I]/([I] +Ki) values. With concentrations ranging from 5 to 100 μM, trimethoprim exhibited a selective inhibitory effect on CYP2C8-mediated paclitaxel 6α-hydroxylation in human liver microsomes and recombinant CYP2C8, with apparent IC50(Ki) values of 54 μM (32 μM) and 75 μM, respectively. With concentrations ranging from 50 to 500 μM, sulfamethoxazole was a selective inhibitor of CYP2C9-mediated tolbutamide hydroxylation in human liver microsomes and recombinant CYP2C9, with apparent IC50 (Ki) values of 544 μM (271 μM) and 456 μM, respectively. With concentrations higher than 100 μM trimethoprim and 500 μM sulfamethoxazole, both drugs lost their selectivity for the P450 isoforms. Based on estimated total hepatic concentrations (or free plasma concentrations) of the drugs and the scaling model, one would expect in vivo in humans 80% (26%) and 13% (24%) inhibition of the metabolic clearance of CYP2C8 and CYP2C9 substrates by trimethoprim and sulfamethoxazole, respectively. In conclusion, trimethoprim and sulfamethoxazole can be used as selective inhibitors of CYP2C8 and CYP2C9 in in vitro studies. In humans, trimethoprim and sulfamethoxazole may inhibit the activities of CYP2C8 and CYP2C9, respectively.

Footnotes

  • This study was supported by grants from the Helsinki University Central Hospital Research Fund and the National Technology Agency of Finland (Tekes), Finland.

  • Abbreviations used are::
    P450
    cytochrome P-450
    HPLC
    high-performance liquid chromatography
    • Received December 5, 2001.
    • Accepted February 19, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 30 (6)
Drug Metabolism and Disposition
Vol. 30, Issue 6
1 Jun 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Trimethoprim and Sulfamethoxazole are Selective Inhibitors of CYP2C8 and CYP2C9, Respectively
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Trimethoprim and Sulfamethoxazole are Selective Inhibitors of CYP2C8 and CYP2C9, Respectively

Xia Wen, Jun-Sheng Wang, Janne T. Backman, Jouko Laitila and Pertti J. Neuvonen
Drug Metabolism and Disposition June 1, 2002, 30 (6) 631-635; DOI: https://doi.org/10.1124/dmd.30.6.631

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Trimethoprim and Sulfamethoxazole are Selective Inhibitors of CYP2C8 and CYP2C9, Respectively

Xia Wen, Jun-Sheng Wang, Janne T. Backman, Jouko Laitila and Pertti J. Neuvonen
Drug Metabolism and Disposition June 1, 2002, 30 (6) 631-635; DOI: https://doi.org/10.1124/dmd.30.6.631
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Series-Compartment Models of Hepatic Elimination
  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics