Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Characterization of Butyrylcholinesterase Antagonism of Cocaine-Induced Hyperactivity

Lee Koetzner and James H. Woods
Drug Metabolism and Disposition June 2002, 30 (6) 716-723; DOI: https://doi.org/10.1124/dmd.30.6.716
Lee Koetzner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James H. Woods
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although there are several published demonstrations that exogenous butyrylcholinesterase (EC 3.1.1.8) works to antagonize cocaine in vivo, a systematic characterization of the enzyme-drug interaction is lacking as is confirmation of the mechanism of effect. This has been addressed using cocaine-induced locomotor activity in mice as a behavioral endpoint. The enzyme was effective, but the enzyme dose-antagonist effect relationship revealed an asymptotic partial maximum effect. This effect was not due to dose-dependent enzyme pharmacokinetics or to a stimulant effect of the cocaine metabolites but rather to partial metabolism of cocaine. Since neither metabolite of cocaine inhibited enzyme activity as potently as cocaine, partial metabolism is not likely due to end-product inhibition. The enzyme reduced the maximum effect of cocaine on locomotor activity. The mechanistic data are generally consistent: the enzyme was inactive against the nonester dopamine/norepinephrine uptake inhibitor, nomifensine, and a paraoxon-inactivated sample of enzyme was ineffective. However, the enzyme was effective against bupropion, a nonester dopamine uptake inhibitor.

Footnotes

  • Supported by U. S. Public Health Service Grants DA00254 and DA05777.

  • Abbreviations used are::
    BChE
    butyrylcholinesterase
    HPLC
    high-performance liquid chromatography
    RM ANOVA
    repeated-measures analysis of variance
    • Received July 31, 2001.
    • Accepted March 11, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 30 (6)
Drug Metabolism and Disposition
Vol. 30, Issue 6
1 Jun 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of Butyrylcholinesterase Antagonism of Cocaine-Induced Hyperactivity
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Characterization of Butyrylcholinesterase Antagonism of Cocaine-Induced Hyperactivity

Lee Koetzner and James H. Woods
Drug Metabolism and Disposition June 1, 2002, 30 (6) 716-723; DOI: https://doi.org/10.1124/dmd.30.6.716

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Characterization of Butyrylcholinesterase Antagonism of Cocaine-Induced Hyperactivity

Lee Koetzner and James H. Woods
Drug Metabolism and Disposition June 1, 2002, 30 (6) 716-723; DOI: https://doi.org/10.1124/dmd.30.6.716
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • In Vivo Functional Effects of CYP2C9 M1L
  • Clearance pathways: fevipiprant with probenecid perpetrator
  • Predicting Volume of Distribution from In Vitro Parameters
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics