Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Pharmacokinetic-Pharmacodynamic Analysis of the Glucose-Lowering Effect of Metformin in Diabetic Rats Reveals First-Pass Pharmacodynamic Effect

David Stepensky, Michael Friedman, Itamar Raz and Amnon Hoffman
Drug Metabolism and Disposition August 2002, 30 (8) 861-868; DOI: https://doi.org/10.1124/dmd.30.8.861
David Stepensky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Friedman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Itamar Raz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amnon Hoffman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Metformin, a commonly used antidiabetic drug, exerts its glucose-lowering effect due to metabolic activities at several sites of action (biophases), including liver, intestine, muscle cells, and adipocytes. The relative contribution of the individual biophases to the overall glucose-lowering effect is not known. Thus, the aims of this investigation were to study the influence of mode of drug administration on the kinetics of glucose-lowering action of metformin in diabetic rats and identify the contribution of different sites of action to the overall response. Streptozotocin diabetic rats received metformin in crossover fashion via intraduodenal, intravenous, and intraportal routes as bolus dose or infusion regimens designed to yield similar pharmacokinetic profiles. Metformin plasma concentrations and blood glucose levels were measured following each mode of administration. Despite the similarity in the concentration-time profiles obtained for different routes of metformin administration, intraduodenal administration produced larger response than intraportal metformin infusion, and lowest response was observed following intravenous administration. This finding indicates that a significant “first-pass” pharmacodynamic effect, which occurs in the presystemic sites of action (liver and the gastrointestinal wall), contributes to the overall glucose-lowering response of metformin. We applied a combined pharmacokinetic-pharmacodynamic modeling approach to study the nature of the first-pass pharmacodynamic effect. The observed data were successfully described by a novel integrated indirect response pharmacokinetic-pharmacodynamic model that revealed a correlation between the temporal metformin concentrations that transit the portal vein and through the gut wall rather than with drug concentrations that accumulated in the liver and the intestinal wall.

Footnotes

  • Abbreviations used are::
    PK
    pharmacokinetic
    PD
    pharmacodynamic
    GI
    gastrointestinal
    AUC
    area under concentration versus time curve
    AUEC
    area under effect versus time curve
    HPLC
    high-performance liquid chromatography
    • Received October 3, 2001.
    • Accepted February 22, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 30 (8)
Drug Metabolism and Disposition
Vol. 30, Issue 8
1 Aug 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacokinetic-Pharmacodynamic Analysis of the Glucose-Lowering Effect of Metformin in Diabetic Rats Reveals First-Pass Pharmacodynamic Effect
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Pharmacokinetic-Pharmacodynamic Analysis of the Glucose-Lowering Effect of Metformin in Diabetic Rats Reveals First-Pass Pharmacodynamic Effect

David Stepensky, Michael Friedman, Itamar Raz and Amnon Hoffman
Drug Metabolism and Disposition August 1, 2002, 30 (8) 861-868; DOI: https://doi.org/10.1124/dmd.30.8.861

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Pharmacokinetic-Pharmacodynamic Analysis of the Glucose-Lowering Effect of Metformin in Diabetic Rats Reveals First-Pass Pharmacodynamic Effect

David Stepensky, Michael Friedman, Itamar Raz and Amnon Hoffman
Drug Metabolism and Disposition August 1, 2002, 30 (8) 861-868; DOI: https://doi.org/10.1124/dmd.30.8.861
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Human ADME Properties of Abrocitinib
  • MSCs Pharmacokinetics under liver diseases
  • OATP1B Downregulation in CDCA-Treated Monkeys
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics