Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

A Novel P450-Catalyzed Transformation of the 2,2,6,6-Tetramethyl Piperidine Moiety to a 2,2-Dimethyl Pyrrolidine in Human Liver Microsomes: Characterization by High Resolution Quadrupole-Time-of-Flight Mass Spectrometry and 1H-NMR

Wenji Yin, George A. Doss, Ralph A. Stearns, Ashok G. Chaudhary, Cornelis E. Hop, Ronald B. Franklin and Sanjeev Kumar
Drug Metabolism and Disposition February 2003, 31 (2) 215-223; DOI: https://doi.org/10.1124/dmd.31.2.215
Wenji Yin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George A. Doss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ralph A. Stearns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ashok G. Chaudhary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cornelis E. Hop
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ronald B. Franklin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sanjeev Kumar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We describe herein a novel metabolic fate of the 2,2,6,6-tetramethyl-piperidine (2,2,6,6-TMPi) moiety to a ring-contracted 2,2-dimethyl pyrrolidine (2,2-DMPy) in human liver microsomal incubations. The existence of this pathway was demonstrated for three compounds (I-III) of varied structures suggesting that this may be a general biotransformation reaction for the 2,2,6,6-TMPi moiety. The 2,2-DMPy metabolites formed in incubations of the three compounds with human liver microsomes were characterized by online high performance liquid chromatography coupled to a high resolution hybrid quadrupole-time-of-flight mass spectrometer. Suggested elemental composition obtained from accurate mass measurements of the molecular ions and fragment ions of the metabolites clearly indicated the loss of a mass equivalent to C3H6 from the parent 2,2,6,6-TMPi functionality. Additional accurate tandem mass spectrometry data indicated that one of the original two gem-dimethyl groups was intact in the metabolite structure. Proof of a ring-contracted 2,2-DMPy structure was obtained using1H-NMR experiments on a metabolite purified from liver microsomal incubations, which showed only two geminal methyl groups, instead of four in the parent compound. Two-dimensional correlation spectroscopy and decoupling experiments established aliphatic protons arranged in a pyrrolidine ring pattern. The fact that the formation of 2,2-DMPy metabolites in human liver microsomes was NADPH-dependent suggested that this novel metabolic reaction was catalyzed by the cytochrome P450 (P450) enzyme(s). Immunoinhibition studies in human liver microsomal incubations using anti-P450 monoclonal antibodies and experiments with insect cell microsomes containing individually expressed recombinant human P450 isozymes indicated that multiple P450 isozymes were capable of catalyzing this novel metabolic transformation.

Footnotes

  • Abbreviations used are::
    2,2,6,6-TMPi
    2,2,6,6-tetramethyl-piperidine
    2,2-DMPy
    2,2-dimethyl pyrrolidine
    P450
    cytochrome P450
    LC-MS/MS
    liquid chromatography-tandem mass spectrometry
    Q-Tof
    quadrupole-time-of-flight
    MS
    mass spectrometry
    CID
    collision-induced dissociation
    HPLC
    high performance liquid chromatography
    • Received August 19, 2002.
    • Accepted November 12, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 31 (2)
Drug Metabolism and Disposition
Vol. 31, Issue 2
1 Feb 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Novel P450-Catalyzed Transformation of the 2,2,6,6-Tetramethyl Piperidine Moiety to a 2,2-Dimethyl Pyrrolidine in Human Liver Microsomes: Characterization by High Resolution Quadrupole-Time-of-Flight Mass Spectrometry and 1H-NMR
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A Novel P450-Catalyzed Transformation of the 2,2,6,6-Tetramethyl Piperidine Moiety to a 2,2-Dimethyl Pyrrolidine in Human Liver Microsomes: Characterization by High Resolution Quadrupole-Time-of-Flight Mass Spectrometry and 1H-NMR

Wenji Yin, George A. Doss, Ralph A. Stearns, Ashok G. Chaudhary, Cornelis E. Hop, Ronald B. Franklin and Sanjeev Kumar
Drug Metabolism and Disposition February 1, 2003, 31 (2) 215-223; DOI: https://doi.org/10.1124/dmd.31.2.215

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

A Novel P450-Catalyzed Transformation of the 2,2,6,6-Tetramethyl Piperidine Moiety to a 2,2-Dimethyl Pyrrolidine in Human Liver Microsomes: Characterization by High Resolution Quadrupole-Time-of-Flight Mass Spectrometry and 1H-NMR

Wenji Yin, George A. Doss, Ralph A. Stearns, Ashok G. Chaudhary, Cornelis E. Hop, Ronald B. Franklin and Sanjeev Kumar
Drug Metabolism and Disposition February 1, 2003, 31 (2) 215-223; DOI: https://doi.org/10.1124/dmd.31.2.215
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mass Balance Recovery and Disposition of AZD4831 in Humans
  • Biotransformation of AZD4831 in Animals and Humans
  • AKRs and GUSs in Testosterone Disposition
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics