Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

PREDICTION OF THE IN VIVO INTERACTION BETWEEN MIDAZOLAM AND MACROLIDES BASED ON IN VITRO STUDIES USING HUMAN LIVER MICROSOMES

Kiyomi Ito, Kanako Ogihara, Shin-ichi Kanamitsu and Tomoo Itoh
Drug Metabolism and Disposition July 2003, 31 (7) 945-954; DOI: https://doi.org/10.1124/dmd.31.7.945
Kiyomi Ito
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kanako Ogihara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shin-ichi Kanamitsu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomoo Itoh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Clinical studies have revealed that plasma concentrations of midazolam after oral administration are greatly increased by coadministration of erythromycin and clarithromycin, whereas azithromycin has little effect on midazolam concentrations. Several macrolide antibiotics are known to be mechanism-based inhibitors of CYP3A, a cytochrome P450 isoform responsible for midazolam hydroxylation. The aim of the present study was to quantitatively predict in vivo drug interactions in humans involving macrolide antibiotics with different inhibitory potencies based on in vitro studies. α- and 4-Hydroxylation of midazolam by human liver microsomes were evaluated as CYP3A-mediated metabolic reactions, and the effect of preincubation with macrolides was examined. The hydroxylation of midazolam was inhibited in a time- and concentration-dependent manner following preincubation with macrolides in the presence of NADPH, whereas almost no inhibition was observed without preincubation. The kinetic parameters for enzyme inactivation (K′app and kinact) involved in midazolam α-hydroxylation were 12.6 μM and 0.0240 min–1, respectively, for erythromycin, 41.4 μM and 0.0423 min–1, respectively, for clarithromycin, and 623 μM and 0.0158 min–1, respectively, for azithromycin. Similar results were obtained for the 4-hydroxylation pathway. These parameters and the reported pharmacokinetic parameters of midazolam and macrolides were then used to simulate in vivo interactions based on a physiological flow model. The area under the concentration-time curve (AUC) of midazolam after oral administration was predicted to increase 2.9- or 3.0-fold following pretreatment with erythromycin (500 mg t.i.d. for 5 or 6 days, respectively) and 2.1- or 2.5-fold by clarithromycin (250 mg b.i.d. for 5 days or 500 mg b.i.d. for 7 days, respectively), whereas azithromycin (500 mg o.d. for 3 days) was predicted to have little effect on midazolam AUC. These results agreed well with the reported in vivo observations.

Footnotes

  • ↵1 Abbreviations used are: AUC, area under the concentration-time curve; o.d., once daily; P450, cytochrome P450; HPLC, high-performance liquid chromatography.

  • This work was supported in part by a Kitasato University Research Grant for Young Researchers.

    • Received September 3, 2002.
    • Accepted March 28, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 31 (7)
Drug Metabolism and Disposition
Vol. 31, Issue 7
1 Jul 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
PREDICTION OF THE IN VIVO INTERACTION BETWEEN MIDAZOLAM AND MACROLIDES BASED ON IN VITRO STUDIES USING HUMAN LIVER MICROSOMES
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

PREDICTION OF THE IN VIVO INTERACTION BETWEEN MIDAZOLAM AND MACROLIDES BASED ON IN VITRO STUDIES USING HUMAN LIVER MICROSOMES

Kiyomi Ito, Kanako Ogihara, Shin-ichi Kanamitsu and Tomoo Itoh
Drug Metabolism and Disposition July 1, 2003, 31 (7) 945-954; DOI: https://doi.org/10.1124/dmd.31.7.945

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

PREDICTION OF THE IN VIVO INTERACTION BETWEEN MIDAZOLAM AND MACROLIDES BASED ON IN VITRO STUDIES USING HUMAN LIVER MICROSOMES

Kiyomi Ito, Kanako Ogihara, Shin-ichi Kanamitsu and Tomoo Itoh
Drug Metabolism and Disposition July 1, 2003, 31 (7) 945-954; DOI: https://doi.org/10.1124/dmd.31.7.945
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mass Balance Recovery and Disposition of AZD4831 in Humans
  • Biotransformation of AZD4831 in Animals and Humans
  • AKRs and GUSs in Testosterone Disposition
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics