Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

MULTISITE KINETIC ANALYSIS OF INTERACTIONS BETWEEN PROTOTYPICAL CYP3A4 SUBGROUP SUBSTRATES: MIDAZOLAM, TESTOSTERONE, AND NIFEDIPINE

Aleksandra Galetin, Stephen E. Clarke and J. Brian Houston
Drug Metabolism and Disposition September 2003, 31 (9) 1108-1116; DOI: https://doi.org/10.1124/dmd.31.9.1108
Aleksandra Galetin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen E. Clarke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Brian Houston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The potential of substrates and modifiers of CYP3A4 to show differential effects, attributed to the existence of multiple binding sites, confounds the straightforward prediction of in vivo drug-drug interactions from in vitro data. A set of in vitro interaction studies was performed in human lymphoblast-expressed CYP3A4 involving representatives of two CYP3A4 subclasses, midazolam (MDZ) and testosterone (TST); a distinct subgroup, nifedipine (NIF); and its structural analog, felodipine (FEL). Mechanistic insight into the interaction of each pair of substrates was provided by employing a range of multisite kinetic models; most were subtypes of a generic two-site model, but a three-site model was required for TST interactions. The complexity of the inhibition profiles and the selection of the kinetic model with appropriate interaction factors were dependent upon the kinetics of substrates involved (hyperbolic, substrate inhibition, or sigmoidal for MDZ/FEL, NIF, and TST, respectively). In no case was a simple reciprocity seen between pairs of substrates. The interaction profiles observed between TST, MDZ, NIF, and FEL involved several atypical inhibition features (partial, cooperative, concentration-dependent loss of characteristic homotropic behavior) and pathway-differential effects reflecting an 80-fold difference in Ki values and a δ factor (defining the alteration in the binding affinity in the presence of a modifier) ranging from 0.04 to 2.3. The conclusions from the multisite kinetic analysis performed support the hypothesis of distinct binding domains for each substrate subgroup. Furthermore, the analysis of intersubstrate interactions strongly indicates the existence of a mutual binding domain common to each of the three CYP3A4 substrate subclasses.

Footnotes

  • ↵1 Abbreviations used are: MDZ, midazolam; TST, testosterone; NIF, nifedipine; FEL, felodipine; 6β-HTS, 6β-hydroxytestosterone; OX NIF, oxidized nifedipine; QUI, quinidine; α, interaction factor for the change in binding affinity (homotropic cooperativity); β, γ interaction factors for the change in catalytic rate constant; δ, interaction factor for the change in binding affinity (heterotropic cooperativity); HAL, haloperidol; αNF, α-naphthoflavone; OR, NADPH-cytochrome P450 reductase; P450, cytochrome P450.

  • Financial support for this project was provided by GlaxoSmithKline, UK. Part of this study was presented at the European Federation for Pharmaceutical Sciences, Oct 20–23, 2002, Stockholm, Sweden.

    • Received March 28, 2003.
    • Accepted May 28, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 31 (9)
Drug Metabolism and Disposition
Vol. 31, Issue 9
1 Sep 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
MULTISITE KINETIC ANALYSIS OF INTERACTIONS BETWEEN PROTOTYPICAL CYP3A4 SUBGROUP SUBSTRATES: MIDAZOLAM, TESTOSTERONE, AND NIFEDIPINE
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

MULTISITE KINETIC ANALYSIS OF INTERACTIONS BETWEEN PROTOTYPICAL CYP3A4 SUBGROUP SUBSTRATES: MIDAZOLAM, TESTOSTERONE, AND NIFEDIPINE

Aleksandra Galetin, Stephen E. Clarke and J. Brian Houston
Drug Metabolism and Disposition September 1, 2003, 31 (9) 1108-1116; DOI: https://doi.org/10.1124/dmd.31.9.1108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

MULTISITE KINETIC ANALYSIS OF INTERACTIONS BETWEEN PROTOTYPICAL CYP3A4 SUBGROUP SUBSTRATES: MIDAZOLAM, TESTOSTERONE, AND NIFEDIPINE

Aleksandra Galetin, Stephen E. Clarke and J. Brian Houston
Drug Metabolism and Disposition September 1, 2003, 31 (9) 1108-1116; DOI: https://doi.org/10.1124/dmd.31.9.1108
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Olanzapine Glucuronidation in Humanized Mice
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
  • Absorption, Metabolism, and Excretion of Taselisib
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics