Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

EVALUATION OF 3′-AZIDO-3′-DEOXYTHYMIDINE, MORPHINE, AND CODEINE AS PROBE SUBSTRATES FOR UDP-GLUCURONOSYLTRANSFERASE 2B7 (UGT2B7) IN HUMAN LIVER MICROSOMES: SPECIFICITY AND INFLUENCE OF THE UGT2B7*2 POLYMORPHISM

Michael H. Court, Soundarajan Krishnaswamy, Qin Hao, Su X. Duan, Christopher J. Patten, Lisa L. von Moltke and David J. Greenblatt
Drug Metabolism and Disposition September 2003, 31 (9) 1125-1133; DOI: https://doi.org/10.1124/dmd.31.9.1125
Michael H. Court
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Soundarajan Krishnaswamy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qin Hao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Su X. Duan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher J. Patten
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa L. von Moltke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David J. Greenblatt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

UDP-glucuronosyltransferase 2B7 (UGT2B7) is involved in the glucuronidation of a wide array of clinically important drugs and endogenous compounds in humans. The aim of this study was to identify an isoform-selective probe substrate that could be used to investigate genetic and environmental influences on glucuronidation mediated by UGT2B7. Three potential probe substrates [3′-azido-3′-deoxythymidine (AZT), morphine, and codeine], were evaluated using recombinant UGTs and human liver microsomes (HLMs; n = 54). Of 11 different UGTs screened, UGT2B7 was the principal isoform mediating AZT glucuronidation, morphine-3-glucuronidation, and morphine-6-glucuronidation. Codeine was glucuronidated equally well by UGT2B4 and UGT2B7. Enzyme kinetic analysis of these activities typically showed higher apparent Km values for HLMs (pooled and individual) compared with UGT2B7. This difference was least (less than 2-fold higher Km) for AZT glucuronidation and greatest (3- to 6-fold higher Km) for codeine glucuronidation. Microsomal UGT2B7 protein content correlated well with AZT glucuronidation (rs = 0.77), to a lesser extent with morphine-3-glucuronidation (rs = 0.50) and morphine-6-glucuronidation (rs = 0.51), but very weakly with codeine glucuronidation (rs = 0.33). Livers were also genotyped for the UGT2B7*2 (H268Y) polymorphism. No effect of genotype on microsomal glucuronidation or UGT2B7 protein content was observed. In conclusion, although both AZT and morphine can serve as in vitro probe substrates for UGT2B7, AZT appears to be more selective than morphine. Codeine is not a useful UGT2B7 probe substrate because of significant glucuronidation by UGT2B4. The UGT2B7*2 polymorphism is not a determinant of glucuronidation of AZT, morphine, or codeine in HLMs.

Footnotes

  • ↵1 Abbreviations used are: UGT, UDP-glucuronosyltransferase; AZT, 3′-azido-3′-deoxythymidine; HLMs, human liver microsomes; HPLC, high-performance liquid chromatography; UDPGA, UDP-glucuronic acid; TBS, Tris-buffered saline; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; dNTPs, deoxynucleoside-5′-triphosphate; ANOVA, analysis of variance; bp, base pair.

  • This work was supported by Grants GM-61834, DA-05258, MH-58435, DA-13209, DK-58496, AG-17880, AT-01381, and RR-00054 from the National Institutes of Health (Bethesda, MD).

    • Received January 31, 2003.
    • Accepted June 12, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 31 (9)
Drug Metabolism and Disposition
Vol. 31, Issue 9
1 Sep 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
EVALUATION OF 3′-AZIDO-3′-DEOXYTHYMIDINE, MORPHINE, AND CODEINE AS PROBE SUBSTRATES FOR UDP-GLUCURONOSYLTRANSFERASE 2B7 (UGT2B7) IN HUMAN LIVER MICROSOMES: SPECIFICITY AND INFLUENCE OF THE UGT2B7*2 POLYMORPHISM
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

EVALUATION OF 3′-AZIDO-3′-DEOXYTHYMIDINE, MORPHINE, AND CODEINE AS PROBE SUBSTRATES FOR UDP-GLUCURONOSYLTRANSFERASE 2B7 (UGT2B7) IN HUMAN LIVER MICROSOMES: SPECIFICITY AND INFLUENCE OF THE UGT2B7*2 POLYMORPHISM

Michael H. Court, Soundarajan Krishnaswamy, Qin Hao, Su X. Duan, Christopher J. Patten, Lisa L. von Moltke and David J. Greenblatt
Drug Metabolism and Disposition September 1, 2003, 31 (9) 1125-1133; DOI: https://doi.org/10.1124/dmd.31.9.1125

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

EVALUATION OF 3′-AZIDO-3′-DEOXYTHYMIDINE, MORPHINE, AND CODEINE AS PROBE SUBSTRATES FOR UDP-GLUCURONOSYLTRANSFERASE 2B7 (UGT2B7) IN HUMAN LIVER MICROSOMES: SPECIFICITY AND INFLUENCE OF THE UGT2B7*2 POLYMORPHISM

Michael H. Court, Soundarajan Krishnaswamy, Qin Hao, Su X. Duan, Christopher J. Patten, Lisa L. von Moltke and David J. Greenblatt
Drug Metabolism and Disposition September 1, 2003, 31 (9) 1125-1133; DOI: https://doi.org/10.1124/dmd.31.9.1125
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
  • In vitro downregulation of OATP1B1 by retinoids
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics