Abstract
The selective estrogen receptor modulator, raloxifene, has been demonstrated as a potent uncompetitive inhibitor of human liver aldehyde oxidase-catalyzed oxidation of phthalazine, vanillin, and nicotine-Δ1′(5′)-iminium ion, with Ki values of 0.87 to 1.4 nM. Inhibition was not time-dependent. Raloxifene has also been shown to be a noncompetitive inhibitor of an aldehyde oxidase-catalyzed reduction reaction of a hydroxamic acid-containing compound, with a Ki of 51 nM. However, raloxifene had only small effects on xanthine oxidase, an enzyme related to aldehyde oxidase. In addition, several other compounds of the same therapeutic class as raloxifene were examined for their potential to inhibit aldehyde oxidase. However, none were as potent as raloxifene, since IC50 values were orders of magnitude higher and ranged from 0.29 to 57 μ M. In an examination of analogs of raloxifene, it was shown that the bisphenol structure with a hydrophobic group on the 3-position of the benzthiophene ring system was the most important element that imparts inhibitory potency. The relevance of these data to the mechanistic understanding of aldehyde oxidase catalysis, as well as to the potential for raloxifene to cause drug interactions with agents for which aldehyde oxidase-mediated metabolism is important, such as zaleplon or famciclovir, is discussed.
Footnotes
-
↵1 Abbreviations used are: SERM, selective estrogen receptor modulator; HPLC-MS, high pressure liquid chromatography-mass spectrometry; CP-544,439, 4-[4-(fluorophenoxy)-benzenesulfonylamino]-tetrahydro-pyran-4-carbvlic acid hydroxyamide; CP-472,434, 2-[4-(fluorophenoxy)-benzenesulfonylamino]-isobutyramide; GW5638, (2E)-3-[4-(1Z)-1,2-diphenyl-1-butenyl]phenyl]-2-propenoic acid.
- Received August 26, 2003.
- Accepted September 25, 2003.
- The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|