Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

STRUCTURAL ANALYSIS OF CYP2C9 AND CYP2C5 AND AN EVALUATION OF COMMONLY USED MOLECULAR MODELING TECHNIQUES

Lovisa Afzelius, Florian Raubacher, Anders Karlén, Flemming Steen Jørgensen, Tommy B. Andersson, Collen M. Masimirembwa and Ismael Zamora
Drug Metabolism and Disposition November 2004, 32 (11) 1218-1229; DOI: https://doi.org/10.1124/dmd.32.11.1218
Lovisa Afzelius
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Florian Raubacher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anders Karlén
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Flemming Steen Jørgensen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tommy B. Andersson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Collen M. Masimirembwa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ismael Zamora
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This work had two separate aims: to evaluate different modeling techniques and to make a detailed structural characterization of CYP2C9. To achieve these goals, the consensus principal component analysis (CPCA) technique and distance measurements were used to explore available crystal structures, newly built homology models, and repeated molecular dynamics simulations. The CPCA was based on molecular interaction fields focused on the active site regions of the proteins and include detailed amino acid analysis. The comparison of the CYP2C9 and CYP2C5 crystal structures revealed differences in the flexible regions such as the B-C and F-G loop and the N and C termini. Cross homology models of CYP2C9 and CYP2C5, using their respective crystal structures as templates, indicated that such models were more similar to their templates than to their target proteins. Inclusion of multiple templates slightly improved the similarity to the crystal target in some cases and could be recommended even though it requires a careful manual alignment process. The application of molecular dynamics simulations to highly flexible proteins such as cytochromes P450 is also explored and the information is extracted by the CPCA. Advantages and drawbacks are presented for the different modeling techniques. Despite the varying modeling success, the models give insight and understanding by the mutual forming and discarding of hypotheses. This is a dynamic process since the crystal structures are improving with time and, therefore, the answers to the models are also changing accordingly.

Footnotes

  • ABBREVIATIONS: P450, cytochrome P450; PDB, Protein Data Bank; CPCA, consensus principal component analysis; MIF, molecular interaction field; RMSD, root mean square deviation; 3D, three-dimensional; PCA, principal component analysis; MD, molecular dynamics.

    • Received February 26, 2004.
    • Accepted July 12, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 32 (11)
Drug Metabolism and Disposition
Vol. 32, Issue 11
1 Nov 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
STRUCTURAL ANALYSIS OF CYP2C9 AND CYP2C5 AND AN EVALUATION OF COMMONLY USED MOLECULAR MODELING TECHNIQUES
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

STRUCTURAL ANALYSIS OF CYP2C9 AND CYP2C5 AND AN EVALUATION OF COMMONLY USED MOLECULAR MODELING TECHNIQUES

Lovisa Afzelius, Florian Raubacher, Anders Karlén, Flemming Steen Jørgensen, Tommy B. Andersson, Collen M. Masimirembwa and Ismael Zamora
Drug Metabolism and Disposition November 1, 2004, 32 (11) 1218-1229; DOI: https://doi.org/10.1124/dmd.32.11.1218

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

STRUCTURAL ANALYSIS OF CYP2C9 AND CYP2C5 AND AN EVALUATION OF COMMONLY USED MOLECULAR MODELING TECHNIQUES

Lovisa Afzelius, Florian Raubacher, Anders Karlén, Flemming Steen Jørgensen, Tommy B. Andersson, Collen M. Masimirembwa and Ismael Zamora
Drug Metabolism and Disposition November 1, 2004, 32 (11) 1218-1229; DOI: https://doi.org/10.1124/dmd.32.11.1218
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transporter-Mediated Drug-Drug Interactions for E7766
  • Human Liver Partitioning of OATP Substrates
  • Intestinal Organoid Induction Model
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics