Abstract
Verapamil inhibition of CYP3A activity results in many drug-drug interactions with CYP3A substrates, but the mechanism of inhibition is unclear. The present study showed that verapamil enantiomers and their major metabolites [norverapamil and N-desalkylverapamil (D617)] inhibited CYP3A in a time- and concentration-dependent manner by using pooled human liver microsomes and the cDNA-expressed CYP3A4 (+b5). The values of the inactivation kinetic parameters kinact and KI obtained with the cDNA-expressed CYP3A4 (+b5) were 0.39 min-1 and 6.46 μM for R-verapamil, 0.64 min-1 and 2.97 μM for S-verapamil, 1.12 min-1 and 5.89 μM for (±)-norverapamil, and 0.07 min-1 and 7.93 μM for D617. Based on the ratio of kinact and KI, the inactivation potency of verapamil enantiomers and their metabolites was in the following order: S-norverapamil > S-verapamil > R-norverapamil > R-verapamil > D617. Using dual beam spectrophotometry, we confirmed that metabolic intermediate complex formation with CYP3A was the mechanism of inactivation for all compounds. The in vitro unbound fraction was 0.84 for S-verapamil, 0.68 for R-verapamil, and 0.84 for (±)-norverapamil. A mechanism-based pharmacokinetic model predicted that the oral area under the curve (AUC) of a CYP3A substrate that is eliminated completely (fm = 1) by the hepatic CYP3A increased 1.6- to 2.2-fold after repeated oral administration of verapamil. For midazolam (fm = 0.9), a drug that undergoes extensive intestinal wall metabolism, the predicted increase in oral AUC was 3.2- to 4.5-fold. The predicted results correlate well with the in vivo drug interaction data, suggesting that the model is suitable for predicting drug interactions by mechanism-based inhibitors.
Footnotes
-
↵1 Abbreviations used are: D617, N-desalkylverapamil; AUC, area under the concentration-time curve; MIC, metabolic intermediate complex; P450, cytochrome P450; HPLC, high-performance liquid chromatography; HLMs, human liver microsome; P-gp, P-glycoprotein; FG, intestinal wall bioavailability.
-
This research is supported by National Institutes of Health Grant GM67308.
- Received June 26, 2003.
- Accepted October 7, 2003.
- The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|