Abstract
Conjugation of exogenous and endogenous compounds by uridine diphosphoglucuronosyltransferases (UGTs) is a pathway catalyzing the transfer of a glucuronic acid molecule from UDP glucuronic acid to lipophilic aglycones, which become more polar and more easily excretable in the bile or urine. UGTs are divided into two major families, UGT1 and UGT2. The isoform UGT1A10, along with UGT1A7 and UGT1A8, is expressed exclusively in extrahepatic tissues, notably in the gastrointestinal tract. Here, we report the isolation of a mutant clone of the human UGT1A10, at position 211 of the protein, where a threonine residue replaces an isoleucine residue (allele Thr211). Because the isoleucine is conserved among many UGT1A isoforms, we proceeded to the analysis of the activity of the wild-type UGT1A10 (T211I) and compared it with that of the variant enzyme (I211T*). In vitro assays with microsomal extracts from stably expressing human embryonic kidney 293 (HEK293) cells showed that the mutant enzyme lost all detectable activity toward major substrates, which demonstrate that the residue isoleucine at position 211 is essential for UGT1A10 activity. Mutant UGT1A10 (I211T*) also lost all detectable activity toward mycophenolic acid. Genomic DNA from 103 unrelated individuals was sequenced for this mutation, and two heterozygous genotypes were detected for this mutation (frequency: 2 per 100 individuals). Because UGT1A10 appears to be expressed in all gastrointestinal tissues and is active toward a wide range of substrates, lack of activity of this isoform may have an impact on individual glucuronidation efficiency.
Footnotes
-
↵1 Abbreviations used are: UGT, UDP-glucuronosyltransferase; UDPGA, uridine diphosphoglucuronic acid; HEK293, human embryonic kidney 293; PCR, polymerase chain reaction.
-
This work was supported by the Canadian Institutes of Health Research (A.B.).
- Received July 7, 2003.
- Accepted December 22, 2003.
- The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|