Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

ALTERED AZT (3′-AZIDO-3′-DEOXYTHYMIDINE) GLUCURONIDATION KINETICS IN LIVER MICROSOMES AS AN EXPLANATION FOR UNDERPREDICTION OF IN VIVO CLEARANCE: COMPARISON TO HEPATOCYTES AND EFFECT OF INCUBATION ENVIRONMENT

Juntyma J. Engtrakul, Robert S. Foti, Timothy J. Strelevitz and Michael B. Fisher
Drug Metabolism and Disposition November 2005, 33 (11) 1621-1627; DOI: https://doi.org/10.1124/dmd.105.005058
Juntyma J. Engtrakul
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert S. Foti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy J. Strelevitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael B. Fisher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Human liver microsomes are a reagent commonly used to predict human hepatic clearance of new chemical entities via phase 1 metabolism. Another common metabolic pathway, glucuronidation, can also be observed in human liver microsomes, although the scalability of this process has not been validated. In fact, several groups have demonstrated that clearance estimated from liver microsomes with UDP-glucuronic acid typically underpredicts the actual in vivo clearance more than 10-fold for compounds that are predominantly glucuronidated. In contrast, clearance predicted using human hepatocytes, for these same compounds, provides a more accurate assessment of in vivo clearance. We sought to characterize the kinetics of glucuronidation of the selective UGT2B7 substrate AZT (3′-azido-3′-deoxythymidine), a selective UGT2B7 substrate, in human liver microsomes (HLMs), recombinant UGT2B7, and human hepatocytes. Apparent Km values in these three preparations were 760, 490, and 87 μM, with apparent Vmax values highest in hepatocytes. The IC50 for ibuprofen against AZT glucuronidation, when run at its Km concentration in HLMs and hepatocytes, was 975 and 170 μM, respectively. Since incubation conditions have been shown to modulate glucuronidation rates, AZT glucuronidation was performed in various physiological and nonphysiological buffer systems, namely Tris, phosphate, sulfate, carbonate, acetate, human plasma, deproteinized human liver cytosol, and Williams E medium. The data showed that carbonate and Williams E medium, more physiologically relevant buffers, yielded the highest rates of AZT glucuronidation. Km observed in HLM/carbonate was 240 μM, closer to that found in hepatocytes, suggesting that matrix differences might cause the kinetic differences observed between liver preparations. Caution should be exercised when extrapolating metabolic lability via glucuronidation or inhibition of UGT enzymes from human liver microsomes, since this system appears to underpredict the degree of lability or inhibition, respectively, due in part to an apparent decrease in substrate affinity.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.005058.

  • ABBREVIATIONS: HLM, human liver microsome; P450, cytochrome P450; UGT, UDP-glucuronosyltransferase; AZT, 3′-azido-3′-deoxythymidine; AZTG, AZT-glucuronide; UDPGA, UDP-glucuronic acid; WEM, Williams E medium; MRM, multiple reaction monitoring; HPLC-MS/MS, high-performance liquid chromatography-tandem mass spectrometry.

    • Received April 7, 2005.
    • Accepted July 22, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 33 (11)
Drug Metabolism and Disposition
Vol. 33, Issue 11
1 Nov 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
ALTERED AZT (3′-AZIDO-3′-DEOXYTHYMIDINE) GLUCURONIDATION KINETICS IN LIVER MICROSOMES AS AN EXPLANATION FOR UNDERPREDICTION OF IN VIVO CLEARANCE: COMPARISON TO HEPATOCYTES AND EFFECT OF INCUBATION ENVIRONMENT
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

ALTERED AZT (3′-AZIDO-3′-DEOXYTHYMIDINE) GLUCURONIDATION KINETICS IN LIVER MICROSOMES AS AN EXPLANATION FOR UNDERPREDICTION OF IN VIVO CLEARANCE: COMPARISON TO HEPATOCYTES AND EFFECT OF INCUBATION ENVIRONMENT

Juntyma J. Engtrakul, Robert S. Foti, Timothy J. Strelevitz and Michael B. Fisher
Drug Metabolism and Disposition November 1, 2005, 33 (11) 1621-1627; DOI: https://doi.org/10.1124/dmd.105.005058

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

ALTERED AZT (3′-AZIDO-3′-DEOXYTHYMIDINE) GLUCURONIDATION KINETICS IN LIVER MICROSOMES AS AN EXPLANATION FOR UNDERPREDICTION OF IN VIVO CLEARANCE: COMPARISON TO HEPATOCYTES AND EFFECT OF INCUBATION ENVIRONMENT

Juntyma J. Engtrakul, Robert S. Foti, Timothy J. Strelevitz and Michael B. Fisher
Drug Metabolism and Disposition November 1, 2005, 33 (11) 1621-1627; DOI: https://doi.org/10.1124/dmd.105.005058
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Improved CYP Reaction Phenotyping
  • Multiple-Concentration Chemical Inhibition Design
  • New Dog P450 3A98 in Gut
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics