Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

IN VITRO INHIBITION OF UDP GLUCURONOSYLTRANSFERASES BY ATAZANAVIR AND OTHER HIV PROTEASE INHIBITORS AND THE RELATIONSHIP OF THIS PROPERTY TO IN VIVO BILIRUBIN GLUCURONIDATION

Donglu Zhang, Theodore J. Chando, Donald W. Everett, Christopher J. Patten, Shangara S. Dehal and W. Griffith Humphreys
Drug Metabolism and Disposition November 2005, 33 (11) 1729-1739; DOI: https://doi.org/10.1124/dmd.105.005447
Donglu Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Theodore J. Chando
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald W. Everett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher J. Patten
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shangara S. Dehal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Griffith Humphreys
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Several human immunodeficiency virus (HIV) protease inhibitors, including atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir, were tested for their potential to inhibit uridine 5′-diphospho-glucuronosyltransferase (UGT) activity. Experiments were performed with human cDNA-expressed enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) as well as human liver microsomes. All of the protease inhibitors tested were inhibitors of UGT1A1, UGT1A3, and UGT1A4 with IC50 values that ranged from 2 to 87 μM. The IC50 values found for all compounds for UGT1A6, 1A9, and 2B7 were >100 μM. The inhibition (IC50) of UGT1A1 was similar when tested against the human cDNA-expressed enzyme or human liver microsomes for atazanavir, indinavir, and saquinavir (2.4, 87, and 7.3 μM versus 2.5, 68, and 5.0 μM, respectively). By analysis of the double-reciprocal plots of bilirubin glucuronidation activities at different bilirubin concentrations in the presence of fixed concentrations of inhibitors, the UGT1A1 inhibition by atazanavir and indinavir was demonstrated to follow a linear mixed-type inhibition mechanism (Ki = 1.9 and 47.9 μM, respectively). These results suggest that a direct inhibition of UGT1A1-mediated bilirubin glucuronidation may provide a mechanism for the reversible hyperbilirubinemia associated with administration of atazanavir as well as indinavir. In vitro-in vivo scaling with [I]/Ki predicts that atazanavir and indinavir are more likely to induce hyperbilirubinemia than other HIV protease inhibitors studied when a free Cmax drug concentration was used. Our current study provides a unique example of in vitro-in vivo correlation for an endogenous UGT-mediated metabolic pathway.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.005447.

  • ABBREVIATIONS: HIV, human immunodeficiency virus; UGT, uridine 5′-diphospho-glucuronosyltransferase; MRP, multidrug resistance protein; UDPGA, uridine 5′-diphospho-glucuronic acid; HPLC, high-performance liquid chromatography; AUC, area under the plasma drug concentration versus time curve; P450, cytochrome P450.

    • Received May 9, 2005.
    • Accepted August 22, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 33 (11)
Drug Metabolism and Disposition
Vol. 33, Issue 11
1 Nov 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
IN VITRO INHIBITION OF UDP GLUCURONOSYLTRANSFERASES BY ATAZANAVIR AND OTHER HIV PROTEASE INHIBITORS AND THE RELATIONSHIP OF THIS PROPERTY TO IN VIVO BILIRUBIN GLUCURONIDATION
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

IN VITRO INHIBITION OF UDP GLUCURONOSYLTRANSFERASES BY ATAZANAVIR AND OTHER HIV PROTEASE INHIBITORS AND THE RELATIONSHIP OF THIS PROPERTY TO IN VIVO BILIRUBIN GLUCURONIDATION

Donglu Zhang, Theodore J. Chando, Donald W. Everett, Christopher J. Patten, Shangara S. Dehal and W. Griffith Humphreys
Drug Metabolism and Disposition November 1, 2005, 33 (11) 1729-1739; DOI: https://doi.org/10.1124/dmd.105.005447

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

IN VITRO INHIBITION OF UDP GLUCURONOSYLTRANSFERASES BY ATAZANAVIR AND OTHER HIV PROTEASE INHIBITORS AND THE RELATIONSHIP OF THIS PROPERTY TO IN VIVO BILIRUBIN GLUCURONIDATION

Donglu Zhang, Theodore J. Chando, Donald W. Everett, Christopher J. Patten, Shangara S. Dehal and W. Griffith Humphreys
Drug Metabolism and Disposition November 1, 2005, 33 (11) 1729-1739; DOI: https://doi.org/10.1124/dmd.105.005447
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • P450 cell lines for xenobiotic metabolite generation
  • Human ADME properties of abrocitinib
  • Impact of physiological microenvironments on HepaRG cells
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics