Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

QUANTITATION OF BISPHENOL A AND BISPHENOL A GLUCURONIDE IN BIOLOGICAL SAMPLES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

Wolfgang Völkel, Nataly Bittner and Wolfgang Dekant
Drug Metabolism and Disposition November 2005, 33 (11) 1748-1757; DOI: https://doi.org/10.1124/dmd.105.005454
Wolfgang Völkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nataly Bittner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wolfgang Dekant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Bisphenol A (BPA) is a weak estrogen. Pharmacokinetic studies of BPA have demonstrated a rapid and extensive metabolism of BPA to the nonestrogenic BPA-monoglucuronide (BPA-gluc). Some investigators have reported that BPA was found at parts per billion concentrations in the tissues or urine of humans without known exposure to BPA. This work developed a rapid and sensitive method for the determination of BPA and BPA-gluc in plasma and urine based on liquid chromatography-tandem mass spectrometry. The liquid chromatography-electrospray ionization-tandem mass spectrometry method for quantitation of BPA and BPA-gluc uses stable isotope-labeled internal standards. A linear ion trap mass spectrometer permits identification and quantitation of BPA-gluc and BPA without sample workup. Development of separation conditions reduced the BPA-background in solvent samples to below 2.5 pmol/ml for BPA. Limit of quantitation (LOQ) for BPA in control urine was 15 pmol/ml; LOQ for BPA-gluc was 65 pmol/ml. Application of the method to urine samples from human subjects (n = 6) after administration of 25 μg of BPA/person (estimated maximum human daily intake) permitted the determination of excretion kinetics for BPA-gluc; BPA was below the LOD in all except two of the samples. In urine or blood samples of human subjects (n = 19) without intentional exposure to BPA, BPA concentrations were always below the limit of detection (≈2.5 pmol/ml) with or without prior glucuronidase treatment. The results show that care is required for analysis of BPA and its major metabolite BPA-gluc. The LOD obtained and the absence of detectable levels of BPA in samples from individuals suggests that general exposure of humans to BPA is much lower than the worst-case exposure scenario developed.

Footnotes

  • This work was supported in part by the German Umweltbundesamt (F1E-Vorhabenkennzeichen 297 61 001/06). Mass spectrometry equipment was purchased by grants supported by the Deutsche Forschungsgemeinschaft and the State of Bavaria. The authors declare no competing interest.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.005454.

  • ABBREVIATIONS: BPA, bisphenol A; BPA-gluc, BPA-monoglucuronide; DP, declustering potential; EPI, enhanced product ion; ER, enhanced resolution; IDA, information-dependent acquisition; LOD, limit of detection; LOQ, limit of quantitation; MRM, multiple reaction monitoring; S/N, signal to noise ratio; GC-MS, gas chromatography-mass spectrometry; LC-MS/MS, liquid chromatography-tandem mass spectrometry; HPLC, high-performance liquid chromatography; amu, atomic mass unit(s).

    • Received May 9, 2005.
    • Accepted August 15, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 33 (11)
Drug Metabolism and Disposition
Vol. 33, Issue 11
1 Nov 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
QUANTITATION OF BISPHENOL A AND BISPHENOL A GLUCURONIDE IN BIOLOGICAL SAMPLES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

QUANTITATION OF BISPHENOL A AND BISPHENOL A GLUCURONIDE IN BIOLOGICAL SAMPLES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

Wolfgang Völkel, Nataly Bittner and Wolfgang Dekant
Drug Metabolism and Disposition November 1, 2005, 33 (11) 1748-1757; DOI: https://doi.org/10.1124/dmd.105.005454

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

QUANTITATION OF BISPHENOL A AND BISPHENOL A GLUCURONIDE IN BIOLOGICAL SAMPLES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

Wolfgang Völkel, Nataly Bittner and Wolfgang Dekant
Drug Metabolism and Disposition November 1, 2005, 33 (11) 1748-1757; DOI: https://doi.org/10.1124/dmd.105.005454
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
  • Absorption, Metabolism, and Excretion of Taselisib
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics