Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

MAPPING OF MULTIDRUG RESISTANCE GENE 1 AND MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN ISOFORM 1 TO 5 mRNA EXPRESSION ALONG THE HUMAN INTESTINAL TRACT

Christian Zimmermann, Heike Gutmann, Petr Hruz, Jean-Pierre Gutzwiller, Christoph Beglinger and Juergen Drewe
Drug Metabolism and Disposition February 2005, 33 (2) 219-224; DOI: https://doi.org/10.1124/dmd.104.001354
Christian Zimmermann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heike Gutmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Petr Hruz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Pierre Gutzwiller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christoph Beglinger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Juergen Drewe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Efflux transporters such as P-glycoprotein and multidrug resistance-associated proteins (MRPs) in the intestinal wall restrict intestinal drug transport. To overcome this limitation for enteral drug absorption, galenical targeting approaches have been proposed for site-specific luminal drug release in segments of the gut, where expression of the respective absorption-limiting transporter is minimal. Therefore, expression of multidrug resistance gene 1 (MDR1) and MRP1-5 was systematically investigated in 10 healthy subjects. Biopsies were taken from different segments of the gastrointestinal tract (from duodenum and terminal ileum, as well as ascending, transverse, descending, and sigmoid colon). Gene expression was investigated by quantitative real-time PCR (TaqMan). MRP3 appeared to be the most abundantly expressed transporter in investigated parts of the human intestine, except for the terminal ileum, where MDR1 showed the highest expression. The ranking of transporter gene expression in the duodenum was MRP3 ≫ MDR1 > MRP2 > MRP5 > MRP4 > MRP1. In the terminal ileum, the ranking order was as follows: MDR1 > MRP3 ≫ MRP1 ≈ MRP5 ≈ MRP4 > MRP2. In all segments of the colon (ascending, transverse, descending, and sigmoid colon), the transporter gene expression showed the following order: MRP3 ≫ MDR1 > MRP4 ≈ MRP5 > MRP1 ≫ MRP2. We have shown, for the first time, systematic site-specific expression of MDR1 and MRP mRNA along the gastrointestinal tract in humans. All transporters showed alterations in their expression levels from the duodenum to sigmoid colon. The most pronounced changes were observed for MRP2, with high levels in the small intestine and hardly any expression in colonic segments. This knowledge may be useful to develop new targeting strategies for enteral drug delivery.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.104.001354.

  • ABBREVIATIONS: MDR1, multidrug resistance gene 1; MRP1-5, multidrug resistance-associated protein isoforms 1 to 5; PCR, polymerase chain reaction; ABC, ATP-binding cassette; SN-38, 7-ethyl-10-hydroxycamptothecin (active metabolite of irinotecan).

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 33 (2)
Drug Metabolism and Disposition
Vol. 33, Issue 2
1 Feb 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
MAPPING OF MULTIDRUG RESISTANCE GENE 1 AND MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN ISOFORM 1 TO 5 mRNA EXPRESSION ALONG THE HUMAN INTESTINAL TRACT
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

MAPPING OF MULTIDRUG RESISTANCE GENE 1 AND MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN ISOFORM 1 TO 5 mRNA EXPRESSION ALONG THE HUMAN INTESTINAL TRACT

Christian Zimmermann, Heike Gutmann, Petr Hruz, Jean-Pierre Gutzwiller, Christoph Beglinger and Juergen Drewe
Drug Metabolism and Disposition February 1, 2005, 33 (2) 219-224; DOI: https://doi.org/10.1124/dmd.104.001354

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

MAPPING OF MULTIDRUG RESISTANCE GENE 1 AND MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN ISOFORM 1 TO 5 mRNA EXPRESSION ALONG THE HUMAN INTESTINAL TRACT

Christian Zimmermann, Heike Gutmann, Petr Hruz, Jean-Pierre Gutzwiller, Christoph Beglinger and Juergen Drewe
Drug Metabolism and Disposition February 1, 2005, 33 (2) 219-224; DOI: https://doi.org/10.1124/dmd.104.001354
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics