Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

IMPACT OF PARALLEL PATHWAYS OF DRUG ELIMINATION AND MULTIPLE CYTOCHROME P450 INVOLVEMENT ON DRUG-DRUG INTERACTIONS: CYP2D6 PARADIGM

Kiyomi Ito, David Hallifax, R. Scott Obach and J. Brian Houston
Drug Metabolism and Disposition June 2005, 33 (6) 837-844; DOI: https://doi.org/10.1124/dmd.105.003715
Kiyomi Ito
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Hallifax
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Scott Obach
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Brian Houston
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The success of in vitro derived Ki values for predicting drug-drug interactions in vivo has been mixed. For example, the use of hepatic input concentration of inhibitor has resolved the negative and positive interactions on the qualitative level, eliminating false negative predictions. However, several examples of false positives and a high incidence of over-predictions of true positive interactions indicated a need for incorporation of additional factors. The aim of this study was to investigate the effect of parallel elimination pathways as a possible reason for false positives and over-predictions. Simulation studies indicated that the degree of interaction (assessed by area under the plasma concentration-time curve ratio in the presence and absence of inhibitor) depends largely on the fraction of substrate metabolized by the particular P450 enzyme (fmCYPi) that is inhibited. The current analysis focused on CYP2D6 interactions due to the well documented genetic polymorphism and the ability to estimate fmCYP2D6 readily from in vivo data obtained in extensive and poor metabolizers. Based on either a phenotype study or an alternative regression analysis approach, the fmCYP2D6 values of 0.37 to 0.94 and 0.25 to 0.89, respectively, were obtained for nine substrates. Prediction of 44 drug-drug interaction studies was improved by the combination of parallel pathways of elimination and their susceptibility to inhibition. The overall success of predicting positive and negative interactions was increased from 54% to 84%, and the number of over-predictions was substantially reduced. It is concluded that incorporating parallel pathways provides a valuable step forward in making quantitative predictions of drug-drug interactions from in vitro data.

Footnotes

  • Financial support for this project was provided by the following Centre for Applied Pharmacokinetic Research (CAPkR) Consortium members: Bristol Myers-Squibb, GlaxoSmithKline, Novartis, Pfizer, Roche, and Servier. Part of this study was presented at the 8th European ISSX Meeting, Dijon, April 27–May 1, 2003 and was published in abstract form in Drug Metab Rev35 (Suppl 1):49.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.003715.

  • ABBREVIATIONS: DDI, drug-drug interaction; AUC, area under the plasma concentration-time curve; CLint, intrinsic clearance; EM, extensive metabolizer; fmCYPi, fraction metabolized by a particular P450 enzyme i; [I], concentration of inhibitor available to the enzyme; PM, poor metabolizer.

    • Received January 14, 2005.
    • Accepted March 9, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 33 (6)
Drug Metabolism and Disposition
Vol. 33, Issue 6
1 Jun 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
IMPACT OF PARALLEL PATHWAYS OF DRUG ELIMINATION AND MULTIPLE CYTOCHROME P450 INVOLVEMENT ON DRUG-DRUG INTERACTIONS: CYP2D6 PARADIGM
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

IMPACT OF PARALLEL PATHWAYS OF DRUG ELIMINATION AND MULTIPLE CYTOCHROME P450 INVOLVEMENT ON DRUG-DRUG INTERACTIONS: CYP2D6 PARADIGM

Kiyomi Ito, David Hallifax, R. Scott Obach and J. Brian Houston
Drug Metabolism and Disposition June 1, 2005, 33 (6) 837-844; DOI: https://doi.org/10.1124/dmd.105.003715

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

IMPACT OF PARALLEL PATHWAYS OF DRUG ELIMINATION AND MULTIPLE CYTOCHROME P450 INVOLVEMENT ON DRUG-DRUG INTERACTIONS: CYP2D6 PARADIGM

Kiyomi Ito, David Hallifax, R. Scott Obach and J. Brian Houston
Drug Metabolism and Disposition June 1, 2005, 33 (6) 837-844; DOI: https://doi.org/10.1124/dmd.105.003715
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Sex- and lifestyle-related factors affect hepatic CYP levels
  • Adipocyte PXR does not play an essential role in obesity.
  • CYP3A-mediated oxidation of DABE and BIBR0951
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics