Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

A UNIFIED MODEL FOR PREDICTING HUMAN HEPATIC, METABOLIC CLEARANCE FROM IN VITRO INTRINSIC CLEARANCE DATA IN HEPATOCYTES AND MICROSOMES

Robert J. Riley, D. F. McGinnity and R. P. Austin
Drug Metabolism and Disposition September 2005, 33 (9) 1304-1311; DOI: https://doi.org/10.1124/dmd.105.004259
Robert J. Riley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. F. McGinnity
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. P. Austin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The aim of this study was to evaluate a unified method for predicting human in vivo intrinsic clearance (CLint, in vivo) and hepatic clearance (CLh) from in vitro data in hepatocytes and microsomes by applying the unbound fraction in blood (fub) and in vitro incubations (fuinc). Human CLint, in vivo was projected using in vitro data together with biological scaling factors and compared with the unbound intrinsic clearance (CLint, ub, in vivo) estimated from clinical data using liver models with and without the various fu terms. For incubations conducted with fetal calf serum (n = 14), the observed CLint, in vivo was modeled well assuming fuinc and fub were equivalent. CLint, ub, in vivo was predicted best using both fub and fuinc for other hepatocyte data (n = 56; r2 = 0.78, p = 3.3 × 10–19, average fold error = 5.2). A similar model for CLint, ub, in vivo was established for microsomal data (n = 37; r2 = 0.77, p = 1.2 × 10–12, average fold error = 6.1). Using the model for CLint, ub, in vivo (including a further empirical scaling factor), the CLh in humans was also calculated according to the well stirred liver model for the most extensive dataset. CLint, in vivo and CLh were both predicted well using in vitro human data from several laboratories for acidic, basic, and neutral drugs. The direct use of this model using only in vitro human data to predict the metabolic component of CLh is attractive, as it does not require extra information from preclinical studies in animals.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.004259.

  • ABBREVIATIONS: CLint, intrinsic clearance; SF, scaling factor; P450, cytochrome P450; CLh, hepatic clearance; CLint, in vitro, in vitro intrinsic clearance; CLint, in vivo, in vivo intrinsic clearance; fup, plasma unbound fraction; RB, blood-to-plasma concentration ratio; fuinc, unbound fraction in incubations in vitro; fub, unbound fraction in blood; FCS, fetal calf serum; Qh, hepatic blood flow; afe, average fold error.

    • Received February 14, 2005.
    • Accepted May 26, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 33 (9)
Drug Metabolism and Disposition
Vol. 33, Issue 9
1 Sep 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A UNIFIED MODEL FOR PREDICTING HUMAN HEPATIC, METABOLIC CLEARANCE FROM IN VITRO INTRINSIC CLEARANCE DATA IN HEPATOCYTES AND MICROSOMES
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A UNIFIED MODEL FOR PREDICTING HUMAN HEPATIC, METABOLIC CLEARANCE FROM IN VITRO INTRINSIC CLEARANCE DATA IN HEPATOCYTES AND MICROSOMES

Robert J. Riley, D. F. McGinnity and R. P. Austin
Drug Metabolism and Disposition September 1, 2005, 33 (9) 1304-1311; DOI: https://doi.org/10.1124/dmd.105.004259

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

A UNIFIED MODEL FOR PREDICTING HUMAN HEPATIC, METABOLIC CLEARANCE FROM IN VITRO INTRINSIC CLEARANCE DATA IN HEPATOCYTES AND MICROSOMES

Robert J. Riley, D. F. McGinnity and R. P. Austin
Drug Metabolism and Disposition September 1, 2005, 33 (9) 1304-1311; DOI: https://doi.org/10.1124/dmd.105.004259
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • BSEP Function in Suspension Hepatocytes
  • Candesartan glucuronide serves as a CYP2C8 inhibitor
  • Role of AADAC on eslicarbazepine acetate hydrolysis
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics