Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

METABOLISM OF THE ONE-RING OPEN METABOLITES OF THE CARDIOPROTECTIVE DRUG DEXRAZOXANE TO ITS ACTIVE METAL-CHELATING FORM IN THE RAT

Patricia E. Schroeder and Brian B. Hasinoff
Drug Metabolism and Disposition September 2005, 33 (9) 1367-1372; DOI: https://doi.org/10.1124/dmd.105.005546
Patricia E. Schroeder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian B. Hasinoff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Dexrazoxane (ICRF-187) is clinically used as a doxorubicin cardioprotective agent and may act by preventing iron-based oxygen free radical damage through the iron-chelating ability of its fully hydrolyzed metabolite ADR-925 (N,N′-[(1S)-1-methyl-1,2-ethanediyl]-bis[(N-(2-amino-2-oxoethyl)]glycine). Dexrazoxane undergoes initial metabolism to its two one-ring open intermediates and is then further metabolized to its active metal ion-binding form ADR-925. The metabolism of these intermediates to the ring-opened metal-chelating product ADR-925 has been determined in a rat model to identify the mechanism by which dexrazoxane is activated. The plasma concentrations of both intermediates rapidly decreased after their i.v. administration to rats. A maximum concentration of ADR-925 was detected 2 min after i.v. bolus administration, indicating that these intermediates were both rapidly metabolized in vivo to ADR-925. The kinetics of the initial appearance of ADR-925 was consistent with formation rate-limited metabolism of the intermediates. After administration of dexrazoxane or its two intermediates, ADR-925 was detected in significant levels in both heart and liver tissue but was undetectable in brain tissue. The rapid rate of metabolism of the intermediates was consistent with their hydrolysis by tissue dihydroorotase. The rapid appearance of ADR-925 in plasma may make ADR-925 available to be taken up by heart tissue and bind free iron. These studies showed that the two one-ring open metabolites of dexrazoxane were rapidly metabolized in the rat to ADR-925, and thus, these results provide a mechanism by which dexrazoxane is activated to its active metal-binding form.

Footnotes

  • This work was supported by the Canadian Institutes of Health Research, the Canada Research Chairs program, and a Canada Research Chair in Drug Development for B.H. P.S. was supported by a Manitoba Health Research Council studentship and a Canadian Institutes of Health Research studentship.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.005546.

  • ABBREVIATIONS: ICRF-187, dexrazoxane; ADR-925, N,N′-[(1S)-1-methyl-1,2-ethanediyl]bis[(N-(2-amino-2-oxoethyl)]glycine; B, N-(2-amino-2-oxoethyl)-N-[(1S)-2-(3,5-dioxo-1-piperazinyl)-1-methylethyl]glycine; C, N-(2-amino-2-oxoethyl)-N-[(2S)-2-(3,5-dioxo-1-piperazinyl)propyl]glycine; DHPase, dihydropyrimidine amidohydrolase (dihydropyrimidinase); DHOase, dihydroorotase; HPLC, high-pressure liquid chromatography.

    • Received May 18, 2005.
    • Accepted June 17, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 33 (9)
Drug Metabolism and Disposition
Vol. 33, Issue 9
1 Sep 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
METABOLISM OF THE ONE-RING OPEN METABOLITES OF THE CARDIOPROTECTIVE DRUG DEXRAZOXANE TO ITS ACTIVE METAL-CHELATING FORM IN THE RAT
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

METABOLISM OF THE ONE-RING OPEN METABOLITES OF THE CARDIOPROTECTIVE DRUG DEXRAZOXANE TO ITS ACTIVE METAL-CHELATING FORM IN THE RAT

Patricia E. Schroeder and Brian B. Hasinoff
Drug Metabolism and Disposition September 1, 2005, 33 (9) 1367-1372; DOI: https://doi.org/10.1124/dmd.105.005546

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

METABOLISM OF THE ONE-RING OPEN METABOLITES OF THE CARDIOPROTECTIVE DRUG DEXRAZOXANE TO ITS ACTIVE METAL-CHELATING FORM IN THE RAT

Patricia E. Schroeder and Brian B. Hasinoff
Drug Metabolism and Disposition September 1, 2005, 33 (9) 1367-1372; DOI: https://doi.org/10.1124/dmd.105.005546
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Mass Balance Recovery and Disposition of AZD4831 in Humans
  • Biotransformation of AZD4831 in Animals and Humans
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics