Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

BIMOLECULAR FLUORESCENCE COMPLEMENTATION ANALYSIS OF CYTOCHROME P450 2C2, 2E1, AND NADPH-CYTOCHROME P450 REDUCTASE MOLECULAR INTERACTIONS IN LIVING CELLS

Cengiz Ozalp, Elzbieta Szczesna-Skorupa and Byron Kemper
Drug Metabolism and Disposition September 2005, 33 (9) 1382-1390; DOI: https://doi.org/10.1124/dmd.105.005538
Cengiz Ozalp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elzbieta Szczesna-Skorupa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Byron Kemper
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Interactions between cytochromes P450 (P450s) and P450 reductase are required for enzymatic activity, and homo- or heterooligomerization of P450s may also be functionally important. Bimolecular fluorescence complementation (BiFC) was used to examine P450 interactions in a natural membrane context within living cells. BiFC detects protein interactions in living cells by reconstitution of a fluorescent protein from two fragments that are fused to the two interacting proteins. Nonspecific protein-protein interactions were detected if proteins were expressed at high levels. At low protein expression levels, homo-oligomerization of P450 2C2, but not P450 2E1, and interactions of these P450s with P450 reductase were detected by BiFC, consistent with interactions detected previously by fluorescence resonance emission transfer. Weak interaction of P450 2C2 with P450 2E1 and homooligomerization of P450 reductase was also detected by BiFC. Homo-oligomerization of the N-terminal P450 2C1 signal anchor sequence and interactions between the signal anchor and full-length P450 2C2 were detected, suggesting that homo-oligomerization of P450 2C2 is mediated by the signal anchor. However, interactions between the signal anchor and either P450 2E1 or P450 reductase were not detected by BiFC. Although high concentrations of the substrate lauric acid increased BiFC for both P450 2E1 and P450 2C2 with P450 reductase, the concentration dependence did not correlate with reported Km values. These results demonstrate that BiFC is an effective method to study the complex protein interactions that occur within the microsomal P450 system in living cells.

Footnotes

  • This work was supported by Grant GM35897 from the National Institutes of Health.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.005538.

  • ABBREVIATIONS: P450, cytochrome P450; ER, endoplasmic reticulum; FRET, fluorescence resonance energy transfer; BiFC, bimolecular fluorescence complementation; YN, N-terminal YFP fragment; YC, C-terminal YFP fragment; YFP, yellow fluorescent protein; CFP, cyan fluorescent protein; PCR, polymerase chain reaction; HEK, human embryonic kidney; GFP, green fluorescent protein.

    • Received May 17, 2005.
    • Accepted June 22, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 33 (9)
Drug Metabolism and Disposition
Vol. 33, Issue 9
1 Sep 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
BIMOLECULAR FLUORESCENCE COMPLEMENTATION ANALYSIS OF CYTOCHROME P450 2C2, 2E1, AND NADPH-CYTOCHROME P450 REDUCTASE MOLECULAR INTERACTIONS IN LIVING CELLS
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

BIMOLECULAR FLUORESCENCE COMPLEMENTATION ANALYSIS OF CYTOCHROME P450 2C2, 2E1, AND NADPH-CYTOCHROME P450 REDUCTASE MOLECULAR INTERACTIONS IN LIVING CELLS

Cengiz Ozalp, Elzbieta Szczesna-Skorupa and Byron Kemper
Drug Metabolism and Disposition September 1, 2005, 33 (9) 1382-1390; DOI: https://doi.org/10.1124/dmd.105.005538

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

BIMOLECULAR FLUORESCENCE COMPLEMENTATION ANALYSIS OF CYTOCHROME P450 2C2, 2E1, AND NADPH-CYTOCHROME P450 REDUCTASE MOLECULAR INTERACTIONS IN LIVING CELLS

Cengiz Ozalp, Elzbieta Szczesna-Skorupa and Byron Kemper
Drug Metabolism and Disposition September 1, 2005, 33 (9) 1382-1390; DOI: https://doi.org/10.1124/dmd.105.005538
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Mass Balance Recovery and Disposition of AZD4831 in Humans
  • Biotransformation of AZD4831 in Animals and Humans
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics