Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

TRANSCRIPTIONAL REGULATION OF THE PXR GENE: IDENTIFICATION AND CHARACTERIZATION OF A FUNCTIONAL PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR α BINDING SITE WITHIN THE PROXIMAL PROMOTER OF PXR

Sihem Aouabdi, Gordon Gibson and Nick Plant
Drug Metabolism and Disposition January 2006, 34 (1) 138-144; DOI: https://doi.org/10.1124/dmd.105.006064
Sihem Aouabdi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordon Gibson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nick Plant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The pregnane X receptor (PXR, NR1I2) is widely regarded as a central factor in the body's response to changes in the fluxome, the overall metabolite profile in the body. PXR expression is regulated by a number of chemicals at the transcriptional level; the majority of these chemicals are ligands for PXR and substrates for PXR target genes. However, transcriptional activators of PXR, such as clofibrate, do not seem to be PXR ligands or substrates for its target genes. Understanding the molecular mechanisms underlying both these expected and, more importantly, unexpected transcriptional activations is central to fully understanding the roles of PXR in the human body. We have carried out an in silico analysis of the human PXR proximal promoter, identifying putative protein/DNA interaction sites within the 2 kilobases (kb) 5′ to the putative transcription start site. These sites included several for liver-enriched transcription factors, such as the hepatic nuclear factors and CAAT-enhancer binding protein α, and chicken ovalbumin upstream promoter transcription factor, commensurate with the high expression of PXR in liver. Furthermore, we identified putative binding sites for a number of ligand-activated transcription factors, suggesting that these factors may regulate PXR gene expression. Further analysis of this regulatory region has shown that transcriptional activation of PXR by peroxisome proliferator-activated receptor α (PPARα) is via a binding site located approximately 1.3 kb upstream of the putative transcription start site, with ablation of this site preventing PPARα-mediated activation of PXR gene expression. We present a model of how regulation of PXR gene expression by ligand-activated transcription factors may play a central role in the body's response to xenobiotic exposure.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.006064.

  • ABBREVIATIONS: LATF, ligand-activated transcription factor; PXR, pregnane X receptor; GRα, glucocorticoid receptor α; PPARα, peroxisome proliferator-activated receptor α; kb, kilobase(s); CAR, constitutive active receptor; VDR, vitamin D receptor binding element; Wy-14,643, 4-chloro-6-(2,3-xylidino)-2-pyrimidinyl)thioacetic acid (pirinixic acid); SEAP, secretory alkaline phosphatase; PCR, polymerase chain reaction; PPRE, PPARα binding site; DTT, dithiothreitol; EMSA, electromobility shift assay; bp, base pair(s); HNF, hepatic nuclear factor; C/EBPα, CAAT-enhancer binding protein α; ANOVA, analysis of variance.

    • Received June 15, 2005.
    • Accepted October 14, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (1)
Drug Metabolism and Disposition
Vol. 34, Issue 1
1 Jan 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
TRANSCRIPTIONAL REGULATION OF THE PXR GENE: IDENTIFICATION AND CHARACTERIZATION OF A FUNCTIONAL PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR α BINDING SITE WITHIN THE PROXIMAL PROMOTER OF PXR
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

TRANSCRIPTIONAL REGULATION OF THE PXR GENE: IDENTIFICATION AND CHARACTERIZATION OF A FUNCTIONAL PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR α BINDING SITE WITHIN THE PROXIMAL PROMOTER OF PXR

Sihem Aouabdi, Gordon Gibson and Nick Plant
Drug Metabolism and Disposition January 1, 2006, 34 (1) 138-144; DOI: https://doi.org/10.1124/dmd.105.006064

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

TRANSCRIPTIONAL REGULATION OF THE PXR GENE: IDENTIFICATION AND CHARACTERIZATION OF A FUNCTIONAL PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR α BINDING SITE WITHIN THE PROXIMAL PROMOTER OF PXR

Sihem Aouabdi, Gordon Gibson and Nick Plant
Drug Metabolism and Disposition January 1, 2006, 34 (1) 138-144; DOI: https://doi.org/10.1124/dmd.105.006064
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Adipocyte PXR does not play an essential role in obesity.
  • CYP3A-mediated oxidation of DABE and BIBR0951
  • Biodistribution of Lipid in Rats
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics