Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

APPLICATION OF A GENERIC PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL TO THE ESTIMATION OF XENOBIOTIC LEVELS IN HUMAN PLASMA

F. A. Brightman, D. E. Leahy, G. E. Searle and S. Thomas
Drug Metabolism and Disposition January 2006, 34 (1) 94-101; DOI: https://doi.org/10.1124/dmd.105.004838
F. A. Brightman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. E. Leahy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. E. Searle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Thomas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Estimation of xenobiotic kinetics in humans frequently relies upon extrapolation from experimental data generated in animals. In an accompanying paper, we have presented a unique, generic, physiologically based pharmacokinetic model and described its application to the prediction of rat plasma pharmacokinetics from in vitro data alone. Here we demonstrate the application of the same model, parameterized for human physiology, to the estimation of plasma pharmacokinetics in humans and report a comparative evaluation against some recently published predictive methods that involve scaling from in vivo animal data. The model was parameterized through an optimization process, using a training set of in vivo data taken from the literature, and validated using a separate test set of published in vivo data. On average, the vertical divergence of the predicted plasma concentrations from the observed data, on a semilog concentration-time plot, was 0.47 log unit. For the training set, more than 80% of the predicted values of a standardized measure of the area under the concentration-time curve were within 3-fold of the observed values; over 70% of the test set predictions were within the same margin. Furthermore, in terms of predicting human clearance for the test set, the model was found to match or exceed the performance of three published interspecies scaling methods, all of which showed a distinct bias toward overprediction. We conclude that the generic physiologically based pharmacokinetic model, as a means of integrating readily determined in vitro and/or in silico data, is potentially a powerful, cost-effective tool for predicting human xenobiotic kinetics in drug discovery and risk assessment.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.004838.

  • ABBREVIATIONS: PBPK, physiologically based pharmacokinetic; ADME, absorption, distribution, metabolism and elimination; AUC, area under the concentration-time curve; AUCt1-tlast-DN, dose-normalized AUC from the first to the last recorded time points; CLint, hepatic intrinsic metabolic clearance; fup, fraction unbound in plasma; fut, fraction unbound in the interstitial fluid; IQ, interquartile; PK, pharmacokinetic(s); wMLFE, weighted mean log -fold error.

  • ↵ Embedded Image The online version of this article (available at http://dmd.aspetjournals.org) contains supplemental material.

    • Received March 24, 2005.
    • Accepted October 11, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (1)
Drug Metabolism and Disposition
Vol. 34, Issue 1
1 Jan 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
APPLICATION OF A GENERIC PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL TO THE ESTIMATION OF XENOBIOTIC LEVELS IN HUMAN PLASMA
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

APPLICATION OF A GENERIC PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL TO THE ESTIMATION OF XENOBIOTIC LEVELS IN HUMAN PLASMA

F. A. Brightman, D. E. Leahy, G. E. Searle and S. Thomas
Drug Metabolism and Disposition January 1, 2006, 34 (1) 94-101; DOI: https://doi.org/10.1124/dmd.105.004838

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

APPLICATION OF A GENERIC PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL TO THE ESTIMATION OF XENOBIOTIC LEVELS IN HUMAN PLASMA

F. A. Brightman, D. E. Leahy, G. E. Searle and S. Thomas
Drug Metabolism and Disposition January 1, 2006, 34 (1) 94-101; DOI: https://doi.org/10.1124/dmd.105.004838
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Warfarin PBPK Model with TMDD Mechanism
  • Identification of payload-containing catabolites of ADCs
  • PK Interactions of Licorice with Cytochrome P450s
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics