Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Metabolism of Endosulfan-α by Human Liver Microsomes and Its Utility as a Simultaneous in Vitro Probe for CYP2B6 and CYP3A4

Richard C. T. Casabar, Andrew D. Wallace, Ernest Hodgson and Randy L. Rose
Drug Metabolism and Disposition October 2006, 34 (10) 1779-1785; DOI: https://doi.org/10.1124/dmd.106.010199
Richard C. T. Casabar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew D. Wallace
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ernest Hodgson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Randy L. Rose
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Endosulfan-α is metabolized to a single metabolite, endosulfan sulfate, in pooled human liver microsomes (Km = 9.8 μM, Vmax = 178.5 pmol/mg/min). With the use of recombinant cytochrome P450 (P450) isoforms, we identified CYP2B6 (Km = 16.2 μM, Vmax = 11.4 nmol/nmol P450/min) and CYP3A4 (Km = 14.4 μM, Vmax = 1.3 nmol/nmol P450/min) as the primary enzymes catalyzing the metabolism of endosulfan-α, although CYP2B6 had an 8-fold higher intrinsic clearance rate (CLint = 0.70 μl/min/pmol P450) than CYP3A4 (CLint = 0.09 μl/min/pmol P450). Using 16 individual human liver microsomes (HLMs), a strong correlation was observed with endosulfan sulfate formation and S-mephenytoin N-demethylase activity of CYP2B6 (r2 = 0.79), whereas a moderate correlation with testosterone 6 β-hydroxylase activity of CYP3A4 (r2 = 0.54) was observed. Ticlopidine (5 μM), a potent CYP2B6 inhibitor, and ketoconazole (10 μM), a selective CYP3A4 inhibitor, together inhibited approximately 90% of endosulfan-α metabolism in HLMs. Using six HLM samples, the percentage total normalized rate (% TNR) was calculated to estimate the contribution of each P450 in the total metabolism of endosulfan-α. In five of the six HLMs used, the percentage inhibition with ticlopidine and ketoconazole in the same incubation correlated with the combined % TNRs for CYP2B6 and CYP3A4. This study shows that endosulfan-α is metabolized by HLMs to a single metabolite, endosulfan sulfate, and that it has potential use, in combination with inhibitors, as an in vitro probe for CYP2B6 and 3A4 catalytic activities.

Footnotes

  • This work was supported by National Institute for Occupational Safety and Health Grant OH 07551-ECU. R.C. was a recipient of the Air Force Institute of Technology scholarship. Results were presented at the 13th annual meeting of ISSX in Maui, HI, Oct 23–27, 2005 (Drug Metab Rev37: 244).

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.106.010199.

  • ABBREVIATIONS: P450, cytochrome P450; rP450, recombinant P450; HLM, human liver microsome; % TNR, percentage total normalized rate; % I, percentage inhibition; ACN, acetonitrile; FMO, flavin-containing monooxygenase; rFMO, recombinant FMO; NR, normalized rate; pHLM, pooled human liver microsome; M-M, Michaelis-Menten; CLint, intrinsic clearance.

  • ↵1 This article is dedicated in memory of Dr. Randy Rose, who died in a tragic car accident.

    • Received March 31, 2006.
    • Accepted July 18, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (10)
Drug Metabolism and Disposition
Vol. 34, Issue 10
1 Oct 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolism of Endosulfan-α by Human Liver Microsomes and Its Utility as a Simultaneous in Vitro Probe for CYP2B6 and CYP3A4
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Metabolism of Endosulfan-α by Human Liver Microsomes and Its Utility as a Simultaneous in Vitro Probe for CYP2B6 and CYP3A4

Richard C. T. Casabar, Andrew D. Wallace, Ernest Hodgson and Randy L. Rose
Drug Metabolism and Disposition October 1, 2006, 34 (10) 1779-1785; DOI: https://doi.org/10.1124/dmd.106.010199

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Metabolism of Endosulfan-α by Human Liver Microsomes and Its Utility as a Simultaneous in Vitro Probe for CYP2B6 and CYP3A4

Richard C. T. Casabar, Andrew D. Wallace, Ernest Hodgson and Randy L. Rose
Drug Metabolism and Disposition October 1, 2006, 34 (10) 1779-1785; DOI: https://doi.org/10.1124/dmd.106.010199
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Olanzapine Glucuronidation in Humanized Mice
  • rs2242480 Regulates the Expression of CYP3A4 and CYP3A5
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics