Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
OtherShort Communication

Rat Cytochrome P450 2C11 in Liver Microsomes Involved in Oxidation of Anesthetic Agent Propofol and Deactivated by Prior Treatment with Propofol

Hiroshi Yamazaki, Makiko Shimizu, Takashi Nagashima, Masaki Minoshima and Norie Murayama
Drug Metabolism and Disposition November 2006, 34 (11) 1803-1805; DOI: https://doi.org/10.1124/dmd.106.011627
Hiroshi Yamazaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Makiko Shimizu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takashi Nagashima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masaki Minoshima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Norie Murayama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Propofol (2,6-diisopropylphenol) is a widely-used anesthetic agent attributable to its rapid biotransformation. Liver microsomal cytochrome P450 (P450) isoforms involved in the biotransformation of propofol in rats and the effects of propofol in vivo on P450 levels in rats were investigated. Of six cDNA-expressed rat P450 isoforms tested, CYP2B1 and CYP2C11 had high catalytic activities from 5 μM and 20 μM propofol concentrations, respectively. Rates of propofol metabolism, at a substrate concentration of 20 μM based on the reported human blood concentration, were decreased by intraperitoneal treatment of propofol with male rats, in contrast to a strong induction by phenobarbital. Single intravenously administered propofol (10 mg/kg) caused the decrease of total P450 and CYP2C contents and activities of testosterone 16α-hydroxylation and propofol metabolism in liver microsomes from male rats. The suppressive effects were caused by administered propofol (10 mg/kg) twice every 4 h on CYP2B activities such as testosterone 16β-hydroxylation or pentoxyresorufin O-depentylation, in addition to the strong suppression of CYP2C function by the single propofol treatment. These results suggest that CYP2C11, presumably deactivated by propofol, has an important role in propofol metabolism in rat liver microsomes. Repeated administration of propofol could markedly decrease the biotransformation of propofol via P450 deactivation.

Footnotes

  • This work was supported in part by the Ministry of Education, Science, Sports and Culture of Japan, The Research Foundation for Pharmaceutical Sciences, and Japan Research Foundation for Clinical Pharmacology.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.106.011627.

  • ABBREVIATIONS: P450, cytochrome P450; ANOVA, analysis of variance.

    • Received June 25, 2006.
    • Accepted August 4, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (11)
Drug Metabolism and Disposition
Vol. 34, Issue 11
1 Nov 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Rat Cytochrome P450 2C11 in Liver Microsomes Involved in Oxidation of Anesthetic Agent Propofol and Deactivated by Prior Treatment with Propofol
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherShort Communication

Rat Cytochrome P450 2C11 in Liver Microsomes Involved in Oxidation of Anesthetic Agent Propofol and Deactivated by Prior Treatment with Propofol

Hiroshi Yamazaki, Makiko Shimizu, Takashi Nagashima, Masaki Minoshima and Norie Murayama
Drug Metabolism and Disposition November 1, 2006, 34 (11) 1803-1805; DOI: https://doi.org/10.1124/dmd.106.011627

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherShort Communication

Rat Cytochrome P450 2C11 in Liver Microsomes Involved in Oxidation of Anesthetic Agent Propofol and Deactivated by Prior Treatment with Propofol

Hiroshi Yamazaki, Makiko Shimizu, Takashi Nagashima, Masaki Minoshima and Norie Murayama
Drug Metabolism and Disposition November 1, 2006, 34 (11) 1803-1805; DOI: https://doi.org/10.1124/dmd.106.011627
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preincubation Effects on Inhibition of OCT1 by CsA
  • Carbamazepine Metabolite and Hypersensitivity Reactions
  • SULT4A1 Preserves Mitochondrial Function
Show more Short Communications

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics