Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Disposition of Flavonoids via Enteric Recycling: Structural Effects and Lack of Correlations between in Vitro and in Situ Metabolic Properties

Stephen W. J. Wang, Jun Chen, Xiaobin Jia, Vincent H. Tam and Ming Hu
Drug Metabolism and Disposition November 2006, 34 (11) 1837-1848; DOI: https://doi.org/10.1124/dmd.106.009910
Stephen W. J. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaobin Jia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vincent H. Tam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ming Hu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The purpose of this study is to determine the importance of coupling of efflux transporters and metabolic enzymes in the intestinal disposition of six isoflavones (genistein, daidzein, formononetin, glycitein, biochanin A, and prunetin), and to determine how isoflavone structural differences affect the intestinal disposition. A rat intestinal perfusion model was used, together with rat intestinal and liver microsomes. In the intestinal perfusion model, significant absorption and excretion differences were found between isoflavones and their respective glucuronides (p <0.05), with prunetin being the most rapidly absorbed and formononetin glucuronides being the most excreted in the small intestine. In contrast, glucuronides were excreted very little in the colon. In an attempt to account for the differences, we measured the glucuronidation rates of six isoflavones in microsomes prepared from rat intestine and liver. Using multiple regression analysis, intrinsic clearance (CLint) and other enzyme kinetic parameters (Vmax and Km) were determined using appropriate kinetic models based on Akaike's information criterion. The kinetic parameters were dependent on the isoflavone used and the types of microsomes. To determine how metabolite excretion rates are controlled, we plotted excretion rates versus calculated microsomal rates (at 10 μM), CLint values, Km values, or Vmax values, and the results indicated that excretion rates were not controlled by any of the kinetic parameters. In conclusion, coupling of intestinal metabolic enzymes and efflux transporters affects the intestinal disposition of isoflavones, and structural differences of isoflavones, such as having methoxyl groups, significantly influenced their intestinal disposition.

Footnotes

  • This work is supported by a grant from the National Institutes of Health (CA87779) to M.H. X.J. was funded by a training grant from Jiangsu Province, The People's Republic of China. Some work was started at Washington State University, where this laboratory was based.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.106.009910.

  • ABBREVIATIONS: MRP, multidrug resistance-associated protein; HPLC, high-performance liquid chromatography; UGT, UDP-glucuronosyltransferase; AIC, Akaike's information criterion; GLM, general linear model; ANOVA, analysis of variance; CLint, intrinsic clearance; BCRP, breast cancer resistance protein.

  • ↵1 Current affiliation: Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, Ann Arbor, MI.

    • Received February 27, 2006.
    • Accepted July 26, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (11)
Drug Metabolism and Disposition
Vol. 34, Issue 11
1 Nov 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Disposition of Flavonoids via Enteric Recycling: Structural Effects and Lack of Correlations between in Vitro and in Situ Metabolic Properties
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Disposition of Flavonoids via Enteric Recycling: Structural Effects and Lack of Correlations between in Vitro and in Situ Metabolic Properties

Stephen W. J. Wang, Jun Chen, Xiaobin Jia, Vincent H. Tam and Ming Hu
Drug Metabolism and Disposition November 1, 2006, 34 (11) 1837-1848; DOI: https://doi.org/10.1124/dmd.106.009910

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Disposition of Flavonoids via Enteric Recycling: Structural Effects and Lack of Correlations between in Vitro and in Situ Metabolic Properties

Stephen W. J. Wang, Jun Chen, Xiaobin Jia, Vincent H. Tam and Ming Hu
Drug Metabolism and Disposition November 1, 2006, 34 (11) 1837-1848; DOI: https://doi.org/10.1124/dmd.106.009910
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics