Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

BRAIN DISTRIBUTION OF CETIRIZINE ENANTIOMERS: COMPARISON OF THREE DIFFERENT TISSUE-TO-PLASMA PARTITION COEFFICIENTS: Kp, Kp,u, AND Kp,uu

Anubha Gupta, Pierre Chatelain, Roy Massingham, E. Niclas Jonsson and Margareta Hammarlund-Udenaes
Drug Metabolism and Disposition February 2006, 34 (2) 318-323; DOI: https://doi.org/10.1124/dmd.105.007211
Anubha Gupta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Chatelain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roy Massingham
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Niclas Jonsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Margareta Hammarlund-Udenaes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The objective of this study was to compare the blood-brain barrier (BBB) transport and brain distribution of levo- (R-CZE) and dextrocetirizine (S-CZE). Microdialysis probes, calibrated using retrodialysis by drug, were placed into the frontal cortex and right jugular vein of eight guinea pigs. Racemic CZE (2.7 mg/kg) was administered as a 60-min i.v. infusion. Unbound and total concentrations of the enantiomers were measured in blood and brain with liquid chromatography-tandem mass spectrometry. The brain distribution of the CZE enantiomers were compared using the parameters Kp,Kp,u,Kp,uu, and Vu,br. Kp compares total brain concentration to total plasma concentration, Kp,u compensates for binding in plasma, whereas Kp,uu also compensates for binding within the brain tissue and directly quantifies the transport across the BBB. Vu,br describes binding within the brain. The stereoselective brain distribution indicated by the Kp of 0.22 and 0.04 for S- and R-CZE, respectively, was caused by different binding to plasma proteins. The transport of the CZE enantiomers across the BBB was not stereoselective, since the Kp,uu was 0.17 and 0.14 (N.S.) for S- and R-CZE, respectively. The Kp,uu values show that the enantiomers are effluxed to a large extent across the BBB. The Vu,br of approximately 2.5 ml/g brain was also similar for both the enantiomers, and the value indicates high binding to brain tissue. Thus, when determining stereoselectivity in brain distribution, it is important to study all factors governing this distribution, binding in blood and brain, and the BBB equilibrium.

Footnotes

  • This work was supported by UCB S.A., Braine-l'Alleud, Belgium. These data were presented at Pharmaceutical Sciences World Congress 2004, Kyoto, Japan, May 30–June 4, 2004.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.007211.

  • ABBREVIATIONS: BBB, blood-brain barrier; CZE, cetirizine; R-CZE, levocetirizine; S-CZE, dextrocetirizine; ISF, interstitial fluid; IS, internal standard; BSA, bovine serum albumin; AUC, area under the curve; CL, clearance.

    • Received September 5, 2005.
    • Accepted November 18, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (2)
Drug Metabolism and Disposition
Vol. 34, Issue 2
1 Feb 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
BRAIN DISTRIBUTION OF CETIRIZINE ENANTIOMERS: COMPARISON OF THREE DIFFERENT TISSUE-TO-PLASMA PARTITION COEFFICIENTS: Kp, Kp,u, AND Kp,uu
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

BRAIN DISTRIBUTION OF CETIRIZINE ENANTIOMERS: COMPARISON OF THREE DIFFERENT TISSUE-TO-PLASMA PARTITION COEFFICIENTS: Kp, Kp,u, AND Kp,uu

Anubha Gupta, Pierre Chatelain, Roy Massingham, E. Niclas Jonsson and Margareta Hammarlund-Udenaes
Drug Metabolism and Disposition February 1, 2006, 34 (2) 318-323; DOI: https://doi.org/10.1124/dmd.105.007211

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

BRAIN DISTRIBUTION OF CETIRIZINE ENANTIOMERS: COMPARISON OF THREE DIFFERENT TISSUE-TO-PLASMA PARTITION COEFFICIENTS: Kp, Kp,u, AND Kp,uu

Anubha Gupta, Pierre Chatelain, Roy Massingham, E. Niclas Jonsson and Margareta Hammarlund-Udenaes
Drug Metabolism and Disposition February 1, 2006, 34 (2) 318-323; DOI: https://doi.org/10.1124/dmd.105.007211
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A PBPK model for CBD in adults and children
  • Antibiotics Induce Changes in the Expression of Rat DPGs
  • Metabolism of Efavirenz by P450s and UGTs in the Brain
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics