Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

NOVEL METABOLITES OF BUPRENORPHINE DETECTED IN HUMAN LIVER MICROSOMES AND HUMAN URINE

Yan Chang, David E. Moody and Elinore F. McCance-Katz
Drug Metabolism and Disposition March 2006, 34 (3) 440-448; DOI: https://doi.org/10.1124/dmd.105.006148
Yan Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David E. Moody
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elinore F. McCance-Katz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The in vitro metabolism of buprenorphine was investigated to explore new metabolic pathways and identify the cytochromes P450 (P450s) responsible for the formation of these metabolites. The resulting metabolites were identified by liquid chromatography-electrospray ionization-tandem mass spectrometry. In addition to norbuprenorphine, two hydroxylated buprenorphine (M1 and M2) and three hydroxylated norbuprenorphine (M3, M4, and M5) metabolites were produced by human liver microsomes (HLMs), with hydroxylation occurring at the tert-butyl group (M1 and M3) and at unspecified site(s) on the ring moieties (M2, M4, and M5). Time course and other data suggest that buprenorphine is N-dealkylated to form norbuprenorphine, followed by hydroxylation to form M3; buprenorphine is hydroxylated to form M1 and M2, followed by N-dealkylation to form M3 and M4 or M5. The involvement of selected P450s was investigated using cDNA-expressed P450s coupled with scaling models, chemical inhibition, monoclonal antibody (MAb) analysis, and correlation studies. The major enzymes involved in buprenorphine elimination and norbuprenorphine and M1 formation were P450s 3A4, 3A5, 3A7, and 2C8, whereas 3A4, 3A5, and 3A7 produced M3 and M5. Based on MAb analysis and chemical inhibition, the contribution of 2C8 was higher in HLMs with higher 2C8 activity, whereas 3A4/5 played a more important role in HLMs with higher 3A4/5 activity. Examination of human urine from subjects taking buprenorphine showed the presence of M1 and M3; most of M1 was conjugated, whereas 60 to 70% of M3 was unconjugated.

Footnotes

  • This study was supported by National Institute on Drug Abuse Grants R01 DA10100 (D.E.M.), RO1 DA 13004 (E.M.K.), and KO2 DA00478 (E.M.K.), and by the General Clinical Research Center at Virginia Commonwealth University (M01RR00065, National Center for Research Resources/National Institutes of Health).

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.006148.

  • ABBREVIATIONS: HLM, human liver microsome; P450, cytochrome P450; MAb, monoclonal antibody; NADPH GS, NADPH generating system; LC-ESI-MS/MS, liquid chromatography-electrospray ionization-tandem mass spectrometry; MS, mass spectrometer; SRM, selected reaction monitoring; SIM, selected ion monitoring; CID, collision-induced dissociation; RAF, relative activity factor.

    • Received June 17, 2005.
    • Accepted December 19, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (3)
Drug Metabolism and Disposition
Vol. 34, Issue 3
1 Mar 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
NOVEL METABOLITES OF BUPRENORPHINE DETECTED IN HUMAN LIVER MICROSOMES AND HUMAN URINE
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

NOVEL METABOLITES OF BUPRENORPHINE DETECTED IN HUMAN LIVER MICROSOMES AND HUMAN URINE

Yan Chang, David E. Moody and Elinore F. McCance-Katz
Drug Metabolism and Disposition March 1, 2006, 34 (3) 440-448; DOI: https://doi.org/10.1124/dmd.105.006148

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

NOVEL METABOLITES OF BUPRENORPHINE DETECTED IN HUMAN LIVER MICROSOMES AND HUMAN URINE

Yan Chang, David E. Moody and Elinore F. McCance-Katz
Drug Metabolism and Disposition March 1, 2006, 34 (3) 440-448; DOI: https://doi.org/10.1124/dmd.105.006148
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CYP3A-Catalyzed Deoxycholate and Glycodeoxycholate Oxidation
  • Variants linked with hepatic CYP2D6 expression and activity
  • Cytochrome P450 4F11 in lung cancer
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics