Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
OtherShort Communication

AN EXAMINATION OF THE INTERPLAY BETWEEN ENTEROCYTE-BASED METABOLISM AND LYMPHATIC DRUG TRANSPORT IN THE RAT

Natalie L. Trevaskis, Christopher J.H. Porter and William N. Charman
Drug Metabolism and Disposition May 2006, 34 (5) 729-733; DOI: https://doi.org/10.1124/dmd.105.008102
Natalie L. Trevaskis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher J.H. Porter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William N. Charman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The current study has examined whether drugs that are transported to the systemic circulation via the intestinal lymph (and therefore associate with lipoproteins within the enterocyte) are accessible to enterocyte-based metabolic processes. The impact of changes to the mass of lipid present within the enterocyte-based lymph lipid precursor pool (LLPP) on the extent of enterocyte-based drug metabolism has also been addressed. Low (5 mg oleic acid/h) or high [20 mg oleic acid/5.2 mg lyso-phosphatidylcholine/h] lipid dose formulations containing halofantrine (which is lymphatically transported and metabolized) or dichlorodiphenyltrichloroethane (DDT) (which is lymphatically transported and relatively metabolically inert) and radiolabeled oleic acid were infused into the duodenum of lymph duct-cannulated rats. After 5 h, drug and radiolabeled oleic acid were removed from the infusions, allowing calculation of the first order turnover rate constants describing drug and oleic acid transport from the LLPP into lymph from the washout profiles. In one group of animals, bolus doses of ketoconazole were also administered to inhibit cytochrome P450-based metabolism. The rate constant describing halofantrine transport from the LLPP into the lymph was lower than that of oleic acid, whereas these differences were abolished in the presence of ketoconazole. DDT and oleic acid exhibited similar turnover rate constants. The data therefore suggest that enterocyte-based metabolism removes halofantrine from the LLPP before transport into the lymph. Furthermore, enhancing the lymphatic transport of halofantrine by coadministration of larger quantities of lipid reduced the difference between the turnover rate constant for halofantrine and oleic acid and seemed to reduce the extent of enterocyte-based metabolism.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.008102.

  • ABBREVIATIONS: LLPP, lymph lipid precursor pool; SER, smooth endoplasmic reticulum; LPC, l-α-lyso-phosphatidylcholine; DDT, dichlorodiphenyltrichloroethane; (dXL/dt)ss, steady-state rate of total fatty acid transport into lymph; KX, first order rate constant describing fatty acid transport from the LLPP into the lymph; XLP, mass of lipid in the LLPP; (dDL/dt)ss, steady-state rate of drug transport into lymph; KD, first order rate constant describing drug transport from the LLPP into the lymph; DLP, mass of drug in the LLPP; HPLC, high performance liquid chromatography; BP, benzo(a)pyrene.

    • Received October 30, 2005.
    • Accepted January 31, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (5)
Drug Metabolism and Disposition
Vol. 34, Issue 5
1 May 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
AN EXAMINATION OF THE INTERPLAY BETWEEN ENTEROCYTE-BASED METABOLISM AND LYMPHATIC DRUG TRANSPORT IN THE RAT
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherShort Communication

AN EXAMINATION OF THE INTERPLAY BETWEEN ENTEROCYTE-BASED METABOLISM AND LYMPHATIC DRUG TRANSPORT IN THE RAT

Natalie L. Trevaskis, Christopher J.H. Porter and William N. Charman
Drug Metabolism and Disposition May 1, 2006, 34 (5) 729-733; DOI: https://doi.org/10.1124/dmd.105.008102

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherShort Communication

AN EXAMINATION OF THE INTERPLAY BETWEEN ENTEROCYTE-BASED METABOLISM AND LYMPHATIC DRUG TRANSPORT IN THE RAT

Natalie L. Trevaskis, Christopher J.H. Porter and William N. Charman
Drug Metabolism and Disposition May 1, 2006, 34 (5) 729-733; DOI: https://doi.org/10.1124/dmd.105.008102
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preincubation Effects on Inhibition of OCT1 by CsA
  • Carbamazepine Metabolite and Hypersensitivity Reactions
  • SULT4A1 Preserves Mitochondrial Function
Show more Short Communications

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics