Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

BIOTRANSFORMATION OF CARBON-14-LABELED MURAGLITAZAR IN MALE MICE: INTERSPECIES DIFFERENCE IN METABOLIC PATHWAYS LEADING TO UNIQUE METABOLITES

Wenying Li, Donglu Zhang, Lifei Wang, Hao Zhang, Peter T. Cheng, Duxi Zhang, Donald W. Everett and W. Griffith Humphreys
Drug Metabolism and Disposition May 2006, 34 (5) 807-820; DOI: https://doi.org/10.1124/dmd.105.007856
Wenying Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donglu Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lifei Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hao Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter T. Cheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Duxi Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald W. Everett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Griffith Humphreys
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Muraglitazar (Pargluva; Bristol-Myers Squibb), a dual α/γ peroxisome proliferator-activated receptor activator, is under development for treatment of type 2 diabetes. This study describes the biotransformation profile of carbon-14-labeled muraglitazar in plasma, urine, feces, and bile samples from male CD-1 mice [intact and bile duct cannulation (BDC)] after single oral doses of 1 and 40 mg/kg. The major drug-related component circulating in mouse plasma was the parent compound for up to 4 h postdose. Similar to excretion profiles of muraglitazar in humans, monkeys, and rats, urinary excretion was the minor and fecal excretion via the biliary route was the major elimination pathway for muraglitazar in mice. The parent compound was a minor component in urine, bile, and feces, indicating that muraglitazar was extensively metabolized in mice. Major biotransformation pathways of muraglitazar in mice included taurine conjugate formation, acyl glucuronidation, hydroxylation, and O-dealkylation. In addition to those metabolites previously identified in humans, monkeys, and rats (M1–M21), several unique metabolites identified in mice included taurine conjugates (M24, M25, M26a,b,c, and M31), oxazole-ring-opened metabolites (M27 and M28), glutathione conjugates (M29a,b and M30), a dihydroxylated metabolite (M32), hydroxylated metabolites (M33 and M35), and a dehydrogenated metabolite (M34). The taurine conjugate of muraglitazar, M24, was a major metabolite in mice, accounting for 12 to 15% of the total dose in BDC mice or 7 to 12% of the total dose in intact mice. None of these taurine and glutathione conjugates were found in the bile samples of humans, monkeys, or rats.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.007856.

  • ABBREVIATIONS: BDC, bile duct cannulation; TFA, trifluoroacetic acid; HPLC, high-performance liquid chromatography; MS/MS, tandem mass spectrometry; ESI, electrospray ionization; LC/MS, liquid chromatography/mass spectrometry; GSH, glutathione.

    • Received October 13, 2005.
    • Accepted February 2, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (5)
Drug Metabolism and Disposition
Vol. 34, Issue 5
1 May 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
BIOTRANSFORMATION OF CARBON-14-LABELED MURAGLITAZAR IN MALE MICE: INTERSPECIES DIFFERENCE IN METABOLIC PATHWAYS LEADING TO UNIQUE METABOLITES
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

BIOTRANSFORMATION OF CARBON-14-LABELED MURAGLITAZAR IN MALE MICE: INTERSPECIES DIFFERENCE IN METABOLIC PATHWAYS LEADING TO UNIQUE METABOLITES

Wenying Li, Donglu Zhang, Lifei Wang, Hao Zhang, Peter T. Cheng, Duxi Zhang, Donald W. Everett and W. Griffith Humphreys
Drug Metabolism and Disposition May 1, 2006, 34 (5) 807-820; DOI: https://doi.org/10.1124/dmd.105.007856

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

BIOTRANSFORMATION OF CARBON-14-LABELED MURAGLITAZAR IN MALE MICE: INTERSPECIES DIFFERENCE IN METABOLIC PATHWAYS LEADING TO UNIQUE METABOLITES

Wenying Li, Donglu Zhang, Lifei Wang, Hao Zhang, Peter T. Cheng, Duxi Zhang, Donald W. Everett and W. Griffith Humphreys
Drug Metabolism and Disposition May 1, 2006, 34 (5) 807-820; DOI: https://doi.org/10.1124/dmd.105.007856
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Deoxycholate Oxidation is Predictive of CYP3A Activity
  • Retroconversion of PQ and its N-oxide metabolites
  • HNF4A-AS1 regulates CYPs via histone modifications
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics