Abstract
Rutaecarpine is the main active alkaloid of the herbal medicine, Evodia rutaecarpa. To identify the major human cytochrome P450 (P450) participating in rutaecarpine oxidative metabolism, human liver microsomes and bacteria-expressed recombinant human P450 were studied. In liver microsomes, rutaecarpine was oxidized to 10-, 11-, 12-, and 3-hydroxyrutaecarpine. Microsomal 10- and 3-hydroxylation activities were strongly inhibited by ketoconazole. The 11- and 12-hydroxylation activities were inhibited by α-naphthoflavone, quinidine, and ketoconazole. These results indicated that multiple hepatic P450s including CYP1A2, CYP2D6, and CYP3A4 participate in rutaecarpine hydroxylations. Among recombinant P450s, CYP1A1 had the highest rutaecarpine hydroxylation activity. Decreased metabolite formation at high substrate concentration indicated that there was substrate inhibition of CYP1A1- and CYP1A2-catalyzed hydroxylations. CYP1A1-catalyzed rutaecarpine hydroxylations had Vmax values of 1388 to ∼1893 pmol/min/nmol P450, Km values of 4.1 to ∼9.5 μM, and Ki values of 45 to ∼103 μM. These results indicated that more than one molecule of rutaecarpine is accessible to the CYP1A active site. The major metabolite 10-hydroxyrutaecarpine decreased CYP1A1, CYP1A2, and CYP1B1 activities with respective IC50 values of 2.56 ± 0.04, 2.57 ± 0.11, and 0.09 ± 0.01 μM, suggesting that product inhibition might occur during rutaecarpine hydroxylation. The metabolite profile and kinetic properties of rutaecarpine hydroxylation by human P450s provide important information relevant to the clinical application of rutaecarpine and E. rutaecarpa.
Footnotes
-
This work was supported by a National Science Council grant NSC 91-2320-B077-010 and National Research Institute of Chinese Medicine, Taiwan.
-
Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.
-
doi:10.1124/dmd.105.007849.
-
ABBREVIATIONS: P450, cytochrome P450; α-NF, α-naphthoflavone; G6P, glucose 6-phosphate; HPLC, high-performance liquid chromatography.
- Received October 13, 2005.
- Accepted February 13, 2006.
- The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|