Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

IN VITRO CHARACTERIZATION OF LAMOTRIGINE N2-GLUCURONIDATION AND THE LAMOTRIGINE-VALPROIC ACID INTERACTION

Andrew Rowland, David J. Elliot, J. Andrew Williams, Peter I. Mackenzie, Ronald G. Dickinson and John O. Miners
Drug Metabolism and Disposition June 2006, 34 (6) 1055-1062; DOI: https://doi.org/10.1124/dmd.106.009340
Andrew Rowland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David J. Elliot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Andrew Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter I. Mackenzie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ronald G. Dickinson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John O. Miners
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Studies were performed to investigate the UDP-glucuronosyltransferase enzyme(s) responsible for the human liver microsomal N2-glucuronidation of the anticonvulsant drug lamotrigine (LTG) and the mechanistic basis for the LTG-valproic acid (VPA) interaction in vivo. LTG N2-glucuronidation by microsomes from five livers exhibited atypical kinetics, best described by a model comprising the expressions for the Hill (1869 ± 1286 μM, n = 0.65 ± 0.16) and Michaelis-Menten (Km 2234 ± 774 μM) equations. The UGT1A4 inhibitor hecogenin abolished the Michaelis-Menten component, without affecting the Hill component. LTG N2-glucuronidation by recombinant UGT1A4 exhibited Michaelis-Menten kinetics, with a Km of 1558 μM. Although recombinant UGT2B7 exhibited only low activity toward LTG, inhibition by zidovudine and fluconazole and activation by bovine serum albumin (BSA) (2%) strongly suggested that this enzyme was responsible for the Hill component of microsomal LTG N2-glucuronidation. VPA (10 mM) abolished the Hill component of microsomal LTG N2-glucuronidation, without affecting the Michaelis-Menten component or UGT1A4-catalyzed LTG metabolism. Ki values for inhibition of the Hill component of LTG N2-glucuronidation by VPA were 2465 ± 370 μM and 387 ± 12 μM in the absence and presence, respectively, of BSA (2%). Consistent with published data for the effect of fluconazole on zidovudine glucuronidation by human liver microsomal UGT2B7, the Ki value generated in the presence of BSA predicted the magnitude of the LTG-VPA interaction reported in vivo. These data indicate that UGT2B7 and UGT1A4 are responsible for the Hill and Michaelis-Menten components, respectively, of microsomal LTG N2-glucuronidation, and the LTG-VPA interaction in vivo arises from inhibition of UGT2B7.

Footnotes

  • This work was funded by grants from Pfizer Global Research, Ann Arbor, Michigan, and the National Health and Medical Research Council of Australia.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.106.009340.

  • ABBREVIATIONS: LTG, lamotrigine; AUC, area under the plasma concentration-time curve; BSA, bovine serum albumin; HLM, human liver microsome; LTG-Gluc, lamotrigine N2-glucuronide; 4MU, 4-methylumbelliferone; 4MUG, 4-methylumbelliferone-β-d-glucuronide; UGT, UDP-glucuronosyltransferase; VPA, valproic acid; BMS-204352, (3S)-(+)-(5-chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-(trifluoromethyl)-2H-indole-2-one); CL, clearance; Hec, hecogenin; HPLC, high-performance liquid chromatography; HSA, human serum albumin.

    • Received January 12, 2006.
    • Accepted March 22, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (6)
Drug Metabolism and Disposition
Vol. 34, Issue 6
1 Jun 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
IN VITRO CHARACTERIZATION OF LAMOTRIGINE N2-GLUCURONIDATION AND THE LAMOTRIGINE-VALPROIC ACID INTERACTION
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

IN VITRO CHARACTERIZATION OF LAMOTRIGINE N2-GLUCURONIDATION AND THE LAMOTRIGINE-VALPROIC ACID INTERACTION

Andrew Rowland, David J. Elliot, J. Andrew Williams, Peter I. Mackenzie, Ronald G. Dickinson and John O. Miners
Drug Metabolism and Disposition June 1, 2006, 34 (6) 1055-1062; DOI: https://doi.org/10.1124/dmd.106.009340

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

IN VITRO CHARACTERIZATION OF LAMOTRIGINE N2-GLUCURONIDATION AND THE LAMOTRIGINE-VALPROIC ACID INTERACTION

Andrew Rowland, David J. Elliot, J. Andrew Williams, Peter I. Mackenzie, Ronald G. Dickinson and John O. Miners
Drug Metabolism and Disposition June 1, 2006, 34 (6) 1055-1062; DOI: https://doi.org/10.1124/dmd.106.009340
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Candesartan glucuronide serves as a CYP2C8 inhibitor
  • Role of AADAC on eslicarbazepine acetate hydrolysis
  • Gene expression profile of human intestinal epithelial cells
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics