Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

COMPARISON OF METHODS FOR THE PREDICTION OF THE METABOLIC SITES FOR CYP3A4-MEDIATED METABOLIC REACTIONS

Diansong Zhou, Lovisa Afzelius, Scott W. Grimm, Tommy B. Andersson, Randy J. Zauhar and Ismael Zamora
Drug Metabolism and Disposition June 2006, 34 (6) 976-983; DOI: https://doi.org/10.1124/dmd.105.008631
Diansong Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lovisa Afzelius
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott W. Grimm
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tommy B. Andersson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Randy J. Zauhar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ismael Zamora
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Predictions of the metabolic sites for new chemical entities, synthesized or only virtual, are important in the early phase of drug discovery to guide chemistry efforts in the synthesis of new compounds with reduced metabolic liability. This information can now be obtained from in silico predictions, and therefore, a thorough and unbiased evaluation of the computational techniques available is needed. Several computational methods to predict the metabolic hot spots are emerging. In this study, metabolite identification using MetaSite and a docking methodology, GLUE, were compared. Moreover, the published CYP3A4 crystal structure and computed CYP3A4 homology models were compared for their usefulness in predicting metabolic sites. A total of 227 known CYP3A4 substrates reported to have one or more metabolites adding up to 325 metabolic pathways were analyzed. Distance-based fingerprints and four-point pharmacophore derived from GRID molecular interaction fields were used to characterize the substrate and protein in MetaSite and the docking methodology, respectively. The CYP3A4 crystal structure and homology model with the reactivity factor enabled achieved a similar prediction success (78%) using the MetaSite method. The docking method had a relatively lower prediction success (∼57% for the homology model), although it still may provide useful insights for interactions between ligand and protein, especially for uncommon reactions. The MetaSite methodology is automated, rapid, and has relatively accurate predictions compared with the docking methodology used in this study.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.105.008631.

  • ABBREVIATIONS: P450, cytochrome P450; MIF, molecular interaction field; PDB, Protein Data Bank; PCA, principal component analysis. GOLPE, Generating Optimal Linear PLS Estimations; CYPBM3, fatty acid monooxygenase from Bacillus megateriu; CYPcam, camphor hydroxylase from Pseudomonas putida; CYPterp, α-terpinol from Pseudomonas sp.; CYPeryF, 6-deoxyerythronalide B hydroxylase from Saccaropolyspora erythrea.

    • Received December 2, 2005.
    • Accepted March 10, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 34 (6)
Drug Metabolism and Disposition
Vol. 34, Issue 6
1 Jun 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
COMPARISON OF METHODS FOR THE PREDICTION OF THE METABOLIC SITES FOR CYP3A4-MEDIATED METABOLIC REACTIONS
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

COMPARISON OF METHODS FOR THE PREDICTION OF THE METABOLIC SITES FOR CYP3A4-MEDIATED METABOLIC REACTIONS

Diansong Zhou, Lovisa Afzelius, Scott W. Grimm, Tommy B. Andersson, Randy J. Zauhar and Ismael Zamora
Drug Metabolism and Disposition June 1, 2006, 34 (6) 976-983; DOI: https://doi.org/10.1124/dmd.105.008631

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

COMPARISON OF METHODS FOR THE PREDICTION OF THE METABOLIC SITES FOR CYP3A4-MEDIATED METABOLIC REACTIONS

Diansong Zhou, Lovisa Afzelius, Scott W. Grimm, Tommy B. Andersson, Randy J. Zauhar and Ismael Zamora
Drug Metabolism and Disposition June 1, 2006, 34 (6) 976-983; DOI: https://doi.org/10.1124/dmd.105.008631
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Functional Characterization of 29 CYP4F2 Variants
  • Exposure-toxicity relation of apatinib
  • ABC phenomenon potentiates anti-HCC efficacy
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics