Abstract
RNA interference (RNAi) is a specific and powerful tool used to manipulate gene expression and study gene function. The cytochrome P450 3A4 (CYP3A4) can metabolize more than 50% of drugs. In the present study, we investigated whether vector-expressed small interfering RNAs (siRNAs) altered the CYP3A4 expression and function using the Chinese hamster cell line (V79) overexpressing CYP3A4 (CHL-3A4). Three different siRNA oligonucleotides (3A4I, 3A4II, and 3A4III) were designed and tested for their ability to interfere with CYP3A4 gene expression. Our study demonstrated that transient transfection of CHL-3A4 cells with the 3A4III siRNAs, but not 3A4I and II, significantly reduced CYP3A4 mRNA levels by 65% and protein expression levels by 75%. All these siRNAs did not affect the expression of CYP3A5 at both mRNA and protein levels in V79 cells overexpressing CYP3A5. Transfection of CHL-3A4 cells with 3A4III siRNAs significantly diminished the cytotoxicity of two CYP3A4 substrate drugs, cyclophosphamide and ifosfamide, in CHL-3A4 cells, with the IC50 increased from 55 to 210 μM to >1000 μM. Nifedipine at 5.78, 14.44, and 28.88 μM was significantly (P < 0.01) depleted by approximately 100, 40, and 22%, respectively, in S9 fractions from CHL-3A4 cells compared with parental CHL-pIC19h cells. In addition, transfection of the CHL-3A4 cells with vectors expressing the 3A4III siRNAs almost completely inhibited CYP3A4-mediated nifedipine metabolism. This study demonstrated, for the first time, the specific suppression of CYP3A4 expression and function using vector-based RNAi technique. The use of RNAi is a promising tool for the study of cytochrome P450 family function.
Footnotes
-
We appreciate the financial support provided by the Science Foundation of Guangzhou (no. 2003Z2-E4071) and the National University of Singapore Academic Research Funds (Grants R-148-000-47-101 & R-148-000-067-112).
-
J.C., X.-X.Y., and M.H. contributed equally to this work.
-
Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.
-
doi:10.1124/dmd.106.009837.
-
ABBREVIATIONS: RNAi, RNA interference; siRNA, small interfering RNA; RISC, RNA-induced silencing complex; P450, cytochrome P450; M-MLV, Moloney murine leukemia virus; HPLC, high-performance liquid chromatography; MEM, minimal essential medium; CHO, Chinese hamster ovary; PCR, polymerase chain reaction; GI, GenInfo identifier; GFP, green fluorescent protein; LP, Lipofectamine; siGFP, small interfering RNA for GFP gene; F, forward; R, reverse; RT-PCR, reverse transcription polymerase chain reaction; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide.
- Received February 14, 2006.
- Accepted June 5, 2006.
- The American Society for Pharmacology and Experimental Therapeutics
DMD articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|