Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
OtherShort Communication

CYP2A13 Metabolizes the Substrates of Human CYP1A2, Phenacetin, and Theophylline

Tatsuki Fukami, Miki Nakajima, Haruko Sakai, Miki Katoh and Tsuyoshi Yokoi
Drug Metabolism and Disposition March 2007, 35 (3) 335-339; DOI: https://doi.org/10.1124/dmd.106.011064
Tatsuki Fukami
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miki Nakajima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Haruko Sakai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miki Katoh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tsuyoshi Yokoi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Human cytochrome CYP2A13 shows overlapping substrate specificity with CYP2A6, catalyzing the metabolism of coumarin, nicotine, cotinine, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Recently, it was found that CYP2A13 could catalyze the metabolic activations of 4-aminobiphenyl and aflatoxin B1, which are known to be catalyzed by human CYP1A2. In the present study, we investigated the substrate specificity of CYP2A13. It was shown that CYP2A13 could catalyze ethoxyresorufin O-deethylation, methoxyresorufin O-demethylation, and phenacetin O-deethylation, which are used as marker activities for human CYP1A2. Although the intrinsic clearances (Vmax/Km) of the two former reactions by CYP2A13 were much lower than that of CYP1A2, the value of the last reaction by CYP2A13 was 2-fold higher than that of CYP1A2. Of particular interest was that CYP2A13 has higher affinity toward phenacetin than CYP1A2. In contrast, CYP2A6 hardly catalyzed these reactions, although the amino acid identity with CYP2A13 is as high as 93.5%. Furthermore, we found that CYP2A13 can catalyze theophylline 8-hydroxylation and 3-demethylation, which are known to be mainly catalyzed by human CYP1A2, although the intrinsic clearances were approximately one-tenth that of CYP1A2. CYP2A13 would not contribute to the systemic clearance of these drugs because CYP2A13 is hardly expressed in human liver. However, it may play a role in metabolism in local tissues such as lung or trachea. In conclusion, the results of the present study could extend our understanding of the substrate specificity of CYP2A13.

Footnotes

  • T.F. was supported as a Research Fellow of the Japan Society for the Promotion of Science.

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.106.011064.

  • ABBREVIATIONS: 1-MX, 1-methylxantine; 3-MX, 3-methylxantine; 1,3-DMU, 1,3-dimethyluric acid; P450, cytochrome P450; HPLC, high-performance liquid chromatography.

    • Received October 24, 2006.
    • Accepted December 15, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 35 (3)
Drug Metabolism and Disposition
Vol. 35, Issue 3
1 Mar 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
CYP2A13 Metabolizes the Substrates of Human CYP1A2, Phenacetin, and Theophylline
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherShort Communication

CYP2A13 Metabolizes the Substrates of Human CYP1A2, Phenacetin, and Theophylline

Tatsuki Fukami, Miki Nakajima, Haruko Sakai, Miki Katoh and Tsuyoshi Yokoi
Drug Metabolism and Disposition March 1, 2007, 35 (3) 335-339; DOI: https://doi.org/10.1124/dmd.106.011064

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
OtherShort Communication

CYP2A13 Metabolizes the Substrates of Human CYP1A2, Phenacetin, and Theophylline

Tatsuki Fukami, Miki Nakajima, Haruko Sakai, Miki Katoh and Tsuyoshi Yokoi
Drug Metabolism and Disposition March 1, 2007, 35 (3) 335-339; DOI: https://doi.org/10.1124/dmd.106.011064
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preincubation Effects on Inhibition of OCT1 by CsA
  • Carbamazepine Metabolite and Hypersensitivity Reactions
  • SULT4A1 Preserves Mitochondrial Function
Show more SHORT COMMUNICATIONS

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics