Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Drug Metabolism & Disposition
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Drug Metabolism & Disposition

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit dmd on Facebook
  • Follow dmd on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

The Development of a Cocktail CYP2B6, CYP2C8, and CYP3A5 Inhibition Assay and a Preliminary Assessment of Utility in a Drug Discovery Setting

Charles J. O'Donnell, Ken Grime, Paul Courtney, Dean Slee and Robert J. Riley
Drug Metabolism and Disposition March 2007, 35 (3) 381-385; DOI: https://doi.org/10.1124/dmd.106.012344
Charles J. O'Donnell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ken Grime
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Courtney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dean Slee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Riley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Tools for studying the roles of CYP2B6, CYP2C8, and CYP3A5 in drug metabolism have recently become available. The level of interest in these enzymes has been elevated because investigations have revealed substrate promiscuity and/or polymorphic expression. In this study, we aimed to develop a single cocktail inhibition assay for the three enzymes and assess its utility in drug discovery. Bupropion hydroxylation, amodiaquine N-deethylation, and midazolam 1′-hydroxylation were chosen as probe reactions for CYP2B6, CYP2C8, and CYP3A5 and were analyzed using liquid chromatography-tandem mass spectrometry. Kinetic analyses were performed to establish suitable conditions for inhibition assays, which were subsequently automated. CYP2B6, CYP2C8, and CYP3A5 IC50 values were determined for marketed drugs and almost 200 AstraZeneca discovery compounds from 16 separate discovery projects. For the marketed drugs, results obtained were comparable with literature values. Data were also compared with IC50 values determined for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. In this dataset, the majority of compounds were more potent inhibitors of CYP2C9, CYP2C19, CYP2D6, and CYP3A4 than of CYP2B6, CYP2C8, or CYP3A5. The potential impact of these findings on a cytochrome P450 inhibition strategy is discussed.

Footnotes

  • Article, publication date, and citation information can be found at http://dmd.aspetjournals.org.

  • doi:10.1124/dmd.106.012344.

  • ABBREVIATIONS: NCE, new chemical entity; P450, cytochrome P450; LC/MS/MS, liquid chromatography/tandem mass spectrometry; DMSO, dimethyl sulfoxide; MTP, microtiter plate.

    • Received August 9, 2006.
    • Accepted November 29, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

 

DMD articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Drug Metabolism and Disposition: 35 (3)
Drug Metabolism and Disposition
Vol. 35, Issue 3
1 Mar 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Drug Metabolism & Disposition article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Development of a Cocktail CYP2B6, CYP2C8, and CYP3A5 Inhibition Assay and a Preliminary Assessment of Utility in a Drug Discovery Setting
(Your Name) has forwarded a page to you from Drug Metabolism & Disposition
(Your Name) thought you would be interested in this article in Drug Metabolism & Disposition.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Development of a Cocktail CYP2B6, CYP2C8, and CYP3A5 Inhibition Assay and a Preliminary Assessment of Utility in a Drug Discovery Setting

Charles J. O'Donnell, Ken Grime, Paul Courtney, Dean Slee and Robert J. Riley
Drug Metabolism and Disposition March 1, 2007, 35 (3) 381-385; DOI: https://doi.org/10.1124/dmd.106.012344

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Development of a Cocktail CYP2B6, CYP2C8, and CYP3A5 Inhibition Assay and a Preliminary Assessment of Utility in a Drug Discovery Setting

Charles J. O'Donnell, Ken Grime, Paul Courtney, Dean Slee and Robert J. Riley
Drug Metabolism and Disposition March 1, 2007, 35 (3) 381-385; DOI: https://doi.org/10.1124/dmd.106.012344
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Determination of Acyl-, O-, and N-Glucuronide
  • TMDD Affects PK of IL-10 Fc-fusion Proteins
  • Uptake as the RDS in Pevonedistat Hepatic Clearance
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About DMD
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-009X (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics